Spaces:
Runtime error
Runtime error
| import warnings | |
| warnings.filterwarnings('ignore', category=DeprecationWarning) | |
| import os | |
| os.environ['MKL_SERVICE_FORCE_INTEL'] = '1' | |
| from pathlib import Path | |
| from collections import defaultdict | |
| import hydra | |
| import numpy as np | |
| import torch | |
| import wandb | |
| from dm_env import specs | |
| import tools.utils as utils | |
| from tools.logger import Logger | |
| from tools.replay import ReplayBuffer, make_replay_loader | |
| torch.backends.cudnn.benchmark = True | |
| def make_agent(obs_type, obs_spec, action_spec, num_expl_steps, cfg): | |
| cfg.obs_type = obs_type | |
| cfg.obs_shape = obs_spec.shape | |
| cfg.action_shape = action_spec.shape | |
| cfg.num_expl_steps = num_expl_steps | |
| return hydra.utils.instantiate(cfg) | |
| def make_dreamer_agent(obs_space, action_spec, cur_config, cfg): | |
| from copy import deepcopy | |
| cur_config = deepcopy(cur_config) | |
| if hasattr(cur_config, 'agent'): | |
| del cur_config.agent | |
| return hydra.utils.instantiate(cfg, cfg=cur_config, obs_space=obs_space, act_spec=action_spec) | |
| class Workspace: | |
| def __init__(self, cfg, savedir=None, workdir=None,): | |
| self.workdir = Path.cwd() if workdir is None else workdir | |
| print(f'workspace: {self.workdir}') | |
| self.cfg = cfg | |
| utils.set_seed_everywhere(cfg.seed) | |
| self.device = torch.device(cfg.device) | |
| # create logger | |
| self.logger = Logger(self.workdir, | |
| use_tb=cfg.use_tb, | |
| use_wandb=cfg.use_wandb) | |
| # create envs | |
| self.task = task = cfg.task | |
| img_size = cfg.img_size | |
| import envs.main as envs | |
| self.train_env = envs.make(task, cfg.obs_type, cfg.action_repeat, cfg.seed, img_size=img_size, viclip_encode=cfg.viclip_encode, clip_hd_rendering=cfg.clip_hd_rendering) | |
| # # create agent | |
| sample_agent = make_dreamer_agent(self.train_env.obs_space, self.train_env.act_space['action'], cfg, cfg.agent) | |
| # create replay buffer | |
| data_specs = (self.train_env.obs_space, | |
| self.train_env.act_space, | |
| specs.Array((1,), np.float32, 'reward'), | |
| specs.Array((1,), np.float32, 'discount')) | |
| if cfg.train_from_data: | |
| # Loading replay buffer | |
| if cfg.replay_from_wandb_project is not None: | |
| api = wandb.Api() | |
| project_name = cfg.replay_from_wandb_project | |
| params2search = { | |
| "task" : cfg.task if cfg.task_snapshot is None else cfg.task_snapshot, | |
| "seed" : cfg.seed if cfg.seed_snapshot is None else cfg.seed_snapshot, | |
| } | |
| runs = api.runs(f"PUT_YOUR_USER_HERE/{project_name}") | |
| found = False | |
| for run in runs: | |
| if np.all([ v == run.config.get(k, None) for k,v in params2search.items()]): | |
| found = True | |
| found_path = Path(run.config['workdir'].replace('/code', '')) | |
| break | |
| if not found: | |
| raise Exception("Replay from wandb buffer not found") | |
| replay_dir = found_path / 'code' / 'buffer' | |
| else: | |
| replay_dir = Path(cfg.replay_load_dir) | |
| # create data storage | |
| self.replay_storage = ReplayBuffer(data_specs, [], | |
| replay_dir, | |
| length=cfg.batch_length, **cfg.replay, | |
| device=cfg.device, ignore_extra_keys=True, load_recursive=True) | |
| print('Loaded ', self.replay_storage._loaded_episodes, 'episodes from ', str(replay_dir)) | |
| # create replay buffer | |
| self.replay_loader = make_replay_loader(self.replay_storage, | |
| cfg.batch_size,) | |
| self._replay_iter = None | |
| # Loading snapshot | |
| if cfg.snapshot_from_wandb_project is not None: | |
| api = wandb.Api() | |
| project_name = cfg.snapshot_from_wandb_project | |
| params2search = { | |
| "task" : cfg.task if cfg.task_snapshot is None else cfg.task_snapshot, | |
| "agent_name" : cfg.agent.name if cfg.agent_name_snapshot is None else cfg.agent_name_snapshot, | |
| "seed" : cfg.seed if cfg.seed_snapshot is None else cfg.seed_snapshot, | |
| } | |
| if cfg.agent.clip_lafite_noise > 0.: | |
| params2search['clip_lafite_noise'] = cfg.agent.clip_lafite_noise | |
| if cfg.agent.clip_add_noise > 0.: | |
| params2search['clip_add_noise'] = cfg.agent.clip_add_noise | |
| if cfg.reset_connector: | |
| del params2search['clip_add_noise'] | |
| runs = api.runs(f"PUT_YOUR_USER_HERE/{project_name}") | |
| found = False | |
| for run in runs: | |
| if np.all([ v == run.config.get(k, None) for k,v in params2search.items()]): | |
| found = True | |
| found_path = Path(run.config['workdir'].replace('/code', '')) | |
| break | |
| if not found: | |
| raise Exception("Snapshot from wandb not found") | |
| if cfg.snapshot_step is None: | |
| snapshot_dir = found_path / 'code' / 'last_snapshot.pt' | |
| else: | |
| snapshot_dir = found_path / 'code' / f'snapshot_{cfg.snapshot_step}.pt' | |
| elif cfg.snapshot_load_dir is not None: | |
| snapshot_dir = Path(cfg.snapshot_load_dir) | |
| else: | |
| snapshot_dir = None | |
| if snapshot_dir is not None: | |
| self.load_snapshot(snapshot_dir, resume=False) | |
| if self.cfg.reset_world_model: | |
| self.agent.wm = sample_agent.wm | |
| # To reset optimization | |
| from agent import dreamer_utils as common | |
| self.agent.wm.model_opt = common.Optimizer('model', self.agent.wm.parameters(), **self.agent.wm.cfg.model_opt, use_amp=self.agent.wm._use_amp) | |
| if self.cfg.reset_connector: | |
| self.agent.wm.connector = sample_agent.wm.connector | |
| # To reset optimization | |
| from agent import dreamer_utils as common | |
| self.agent.wm.model_opt = common.Optimizer('model', self.agent.wm.parameters(), **self.agent.wm.cfg.model_opt, use_amp=self.agent.wm._use_amp) | |
| # overwriting cfg | |
| self.agent.cfg = sample_agent.cfg | |
| self.agent.wm.cfg = sample_agent.wm.cfg | |
| if self.cfg.reset_imag_behavior: | |
| self.agent.instantiate_imag_behavior() | |
| else: | |
| self.agent = sample_agent | |
| self.eval_env = envs.make(self.task, self.cfg.obs_type, self.cfg.action_repeat, self.cfg.seed, img_size=64, ) | |
| if hasattr(self.eval_env, 'eval_mode'): | |
| self.eval_env.eval_mode() | |
| eval_specs = (self.eval_env.obs_space, | |
| self.eval_env.act_space, | |
| specs.Array((1,), np.float32, 'reward'), | |
| specs.Array((1,), np.float32, 'discount')) | |
| self.eval_storage = ReplayBuffer(eval_specs, {}, | |
| self.workdir / 'eval_buffer', | |
| length=cfg.batch_length, **cfg.replay, | |
| device=cfg.device, ignore_extra_keys=True,) | |
| self.eval_storage._minlen = 1 | |
| self.timer = utils.Timer() | |
| self._global_step = 0 | |
| self._global_episode = 0 | |
| def global_step(self): | |
| return self._global_step | |
| def global_episode(self): | |
| return self._global_episode | |
| def global_frame(self): | |
| return self.global_step * self.cfg.action_repeat | |
| def replay_iter(self): | |
| if self._replay_iter is None: | |
| self._replay_iter = iter(self.replay_loader) | |
| return self._replay_iter | |
| def eval(self): | |
| import envs.main as envs | |
| eval_until_episode = utils.Until(self.cfg.num_eval_episodes) | |
| episode_reward = [] | |
| while eval_until_episode(len(episode_reward)): | |
| if len(episode_reward) > 0 and self.global_step == 0: | |
| return | |
| episode_reward.append(0) | |
| step, episode = 0, defaultdict(list) | |
| meta = self.agent.init_meta() | |
| time_step, dreamer_obs = self.eval_env.reset() | |
| data = dreamer_obs | |
| if 'clip_video' in data: | |
| del data['clip_video'] | |
| self.eval_storage.add(data, meta) | |
| agent_state = None | |
| while not time_step.last(): | |
| with torch.no_grad(), utils.eval_mode(self.agent): | |
| action, agent_state = self.agent.act(dreamer_obs, | |
| meta, | |
| self.global_step, | |
| eval_mode=True, | |
| state=agent_state) | |
| time_step, dreamer_obs = self.eval_env.step(action) | |
| for k in dreamer_obs: | |
| episode[k].append(dreamer_obs[k]) | |
| episode_reward[-1] += time_step.reward | |
| if time_step.last(): | |
| if episode_reward[-1] == np.max(episode_reward): | |
| best_episode = {**episode} | |
| if episode_reward[-1] == np.min(episode_reward): | |
| worst_episode = {**episode} | |
| data = dreamer_obs | |
| if 'clip_video' in data: | |
| del data['clip_video'] | |
| self.eval_storage.add(data, meta) | |
| step += 1 | |
| if self.global_step > 0 and self.global_frame % self.cfg.log_episodes_every_frames == 0: | |
| # B, T, C, H, W = video.shape | |
| videos = {'best_episode' : np.stack(best_episode['observation'], axis=0), | |
| 'worst_episode' : np.stack(worst_episode['observation'], axis=0),} | |
| self.logger.log_visual(videos, self.global_frame) | |
| with self.logger.log_and_dump_ctx(self.global_frame, ty='eval') as log: | |
| log('episode_reward', np.mean(episode_reward)) | |
| log('episode_length', step * self.cfg.action_repeat) | |
| log('episode', self.global_episode) | |
| log('step', self.global_step) | |
| def eval_imag_behavior(self,): | |
| self.agent._backup_acting_behavior = self.agent._acting_behavior | |
| self.agent._acting_behavior = self.agent._imag_behavior | |
| self.eval() | |
| self.agent._acting_behavior = self.agent._backup_acting_behavior | |
| def train(self): | |
| # predicates | |
| train_until_step = utils.Until(self.cfg.num_train_frames, 1) | |
| eval_every_step = utils.Every(self.cfg.eval_every_frames, 1) | |
| should_log_scalars = utils.Every(self.cfg.log_every_frames, 1) | |
| should_save_model = utils.Every(self.cfg.save_every_frames, 1) | |
| should_log_visual = utils.Every(self.cfg.visual_every_frames, 1) | |
| metrics = None | |
| while train_until_step(self.global_step): | |
| # try to evaluate | |
| if eval_every_step(self.global_step): | |
| if self.cfg.eval_modality == 'task': | |
| self.eval() | |
| if self.cfg.eval_modality == 'task_imag': | |
| self.eval_imag_behavior() | |
| if self.cfg.eval_modality == 'from_text': | |
| self.logger.log('eval_total_time', self.timer.total_time(), self.global_frame) | |
| self.eval_from_text() | |
| if self.cfg.train_from_data: | |
| # Sampling data | |
| batch_data = next(self.replay_iter) | |
| if self.cfg.train_world_model: | |
| state, outputs, metrics = self.agent.update_wm(batch_data, self.global_step) | |
| else: | |
| with torch.no_grad(): | |
| outputs, metrics = self.agent.wm.observe_data(batch_data,) | |
| if self.cfg.train_connector: | |
| _, metrics = self.agent.wm.update_additional_detached_modules(batch_data, outputs, metrics) | |
| else: | |
| imag_warmup_steps = self.cfg.imag_warmup_steps | |
| metrics, batch_data = {}, None | |
| with torch.no_grad(): | |
| # fake actions | |
| mix = self.cfg.mix_random_actions | |
| random = False | |
| # num warmup steps | |
| if mix: | |
| init = self.agent.wm.rssm.initial(self.cfg.batch_size * (self.cfg.batch_length // 2)) | |
| else: | |
| init = self.agent.wm.rssm.initial(self.cfg.batch_size * self.cfg.batch_length) | |
| unif_dist = self.agent.wm.rssm.get_unif_dist(init) | |
| if 'logit' in init: | |
| init['logit'] = unif_dist.mean | |
| else: | |
| init['mean'] = unif_dist.mean | |
| init['std'] = unif_dist.std | |
| init['stoch'] = unif_dist.sample() | |
| if self.cfg.start_from_video in [True, 'mix']: | |
| T = self.agent.wm.connector.n_frames * 2 # should this be an hyperparam? | |
| B = init['deter'].shape[0] // T | |
| text_feat_dim = self.agent.wm.connector.viclip_emb_dim | |
| video_embed = torch.randn((B, T, text_feat_dim), device=self.agent.device) | |
| video_embed = torch.nn.functional.normalize(video_embed, dim=-1) | |
| # Get initial state | |
| video_init = self.agent.wm.connector.video_imagine(video_embed, dreamer_init=None, sample=True, reset_every_n_frames=False, denoise=True) | |
| video_init = { k : v.reshape(B * T, *v.shape[2:]) for k, v in video_init.items()} | |
| if self.cfg.start_from_video == 'mix': | |
| probs = torch.rand((B * T, 1,1), device=init['stoch'].device) > 0.5 # should this be an hyperparam? | |
| init['stoch'] = (probs * init['stoch']) + ( (~probs) * video_init['stoch'] ) | |
| else: | |
| init['stoch'] = video_init['stoch'] | |
| if random: | |
| fake_action = torch.rand(self.cfg.batch_size * self.cfg.batch_length, imag_warmup_steps, self.agent.act_dim, device=self.agent.device) * 2 - 1 | |
| post = self.agent.wm.rssm.imagine(fake_action, init, sample=True) | |
| post = { k : v[:, -1].reshape([self.cfg.batch_size, self.cfg.batch_length, ] + list(v.shape[2:])) for k,v in post.items() } | |
| elif mix: | |
| fake_action = torch.rand(self.cfg.batch_size * self.cfg.batch_length // 2, imag_warmup_steps, self.agent.act_dim, device=self.agent.device) * 2 - 1 | |
| post1 = self.agent.wm.rssm.imagine(fake_action, init, sample=True) | |
| post1 = { k : v[:, -1].reshape([self.cfg.batch_size, self.cfg.batch_length // 2, ] + list(v.shape[2:])) for k,v in post1.items() } | |
| init2 = { k : v.reshape([self.cfg.batch_size, self.cfg.batch_length // 2, ] + list(v.shape[1:])) for k,v in init.items() } | |
| post2 = self.agent.wm.imagine(self.agent._imag_behavior.actor, init2, None, imag_warmup_steps) | |
| post2 = { k : v[-1, :].reshape([self.cfg.batch_size, self.cfg.batch_length // 2, ] + list(v.shape[2:])) for k,v in post2.items() } | |
| post = { k: torch.cat([post1[k], post2[k]], dim=1) for k in post1 } | |
| else: | |
| init = { k : v.reshape([self.cfg.batch_size, self.cfg.batch_length, ] + list(v.shape[1:])) for k,v in init.items() } | |
| post = self.agent.wm.imagine(self.agent._imag_behavior.actor, init, None, imag_warmup_steps) | |
| post = { k : v[-1, :].reshape([self.cfg.batch_size, self.cfg.batch_length, ] + list(v.shape[2:])) for k,v in post.items() } | |
| is_terminal = torch.zeros(self.cfg.batch_size, self.cfg.batch_length, device=self.agent.device) | |
| outputs = dict(post=post, is_terminal=is_terminal) | |
| if getattr(self.cfg.agent, 'imag_reward_fn', None) is not None: | |
| metrics.update(self.agent.update_imag_behavior(state=None, outputs=outputs, metrics=metrics, seq_data=batch_data,)[1]) | |
| if self.global_step > 0: | |
| if should_log_scalars(self.global_step): | |
| if hasattr(self, 'replay_storage'): | |
| metrics.update(self.replay_storage.stats) | |
| self.logger.log_metrics(metrics, self.global_frame, ty='train') | |
| if should_log_visual(self.global_step) and self.cfg.train_from_data and hasattr(self.agent, 'report'): | |
| with torch.no_grad(), utils.eval_mode(self.agent): | |
| videos = self.agent.report(next(self.replay_iter)) | |
| self.logger.log_visual(videos, self.global_frame) | |
| if should_log_scalars(self.global_step): | |
| elapsed_time, total_time = self.timer.reset() | |
| with self.logger.log_and_dump_ctx(self.global_frame, ty='train') as log: | |
| log('fps', self.cfg.log_every_frames / elapsed_time) | |
| log('step', self.global_step) | |
| if 'model_loss' in metrics: | |
| log('episode_reward', metrics['model_loss'].item()) | |
| # save last model | |
| if should_save_model(self.global_step): | |
| self.save_last_model() | |
| self._global_step += 1 | |
| # == 1000 is to make sure everything is going well since the start | |
| if (self.global_frame == 1000) or (self.global_frame % self.cfg.snapshot_every_frames == 0): | |
| self.save_snapshot() | |
| def save_snapshot(self): | |
| snapshot = self.root_dir / f'snapshot_{self.global_frame}.pt' | |
| keys_to_save = ['agent', '_global_step', '_global_episode'] | |
| payload = {k: self.__dict__[k] for k in keys_to_save} | |
| with snapshot.open('wb') as f: | |
| torch.save(payload, f) | |
| def setup_wandb(self): | |
| cfg = self.cfg | |
| exp_name = '_'.join([ | |
| cfg.experiment, cfg.agent.name, cfg.task, cfg.obs_type, | |
| str(cfg.seed) | |
| ]) | |
| wandb.init(project=cfg.project_name, group=cfg.agent.name, name=exp_name) | |
| flat_cfg = utils.flatten_dict(cfg) | |
| wandb.config.update(flat_cfg) | |
| self.wandb_run_id = wandb.run.id | |
| def save_last_model(self): | |
| snapshot = self.root_dir / 'last_snapshot.pt' | |
| if snapshot.is_file(): | |
| temp = Path(str(snapshot).replace("last_snapshot.pt", "second_last_snapshot.pt")) | |
| os.replace(snapshot, temp) | |
| keys_to_save = ['agent', '_global_step', '_global_episode'] | |
| if self.cfg.use_wandb: | |
| keys_to_save.append('wandb_run_id') | |
| payload = {k: self.__dict__[k] for k in keys_to_save} | |
| with snapshot.open('wb') as f: | |
| torch.save(payload, f) | |
| def load_snapshot(self, snapshot_dir, resume=True): | |
| print('Loading snapshot from: ', str(snapshot_dir)) | |
| try: | |
| snapshot = snapshot_dir / 'last_snapshot.pt' if resume else snapshot_dir | |
| with snapshot.open('rb') as f: | |
| payload = torch.load(f) | |
| except: | |
| snapshot = Path(str(snapshot_dir).replace('last_snapshot', 'second_last_snapshot')) | |
| with snapshot.open('rb') as f: | |
| payload = torch.load(f) | |
| if type(payload) != dict: | |
| self.agent = payload | |
| self.agent.requires_grad_(requires_grad=False) | |
| return | |
| for k,v in payload.items(): | |
| setattr(self, k, v) | |
| if k == 'wandb_run_id' and resume: | |
| assert wandb.run is None | |
| cfg = self.cfg | |
| exp_name = '_'.join([ | |
| cfg.experiment, cfg.agent.name, cfg.task, cfg.obs_type, | |
| str(cfg.seed) | |
| ]) | |
| wandb.init(project=cfg.project_name, group=cfg.agent.name, name=exp_name, id=v, resume="must") | |
| def get_snapshot_dir(self): | |
| snap_dir = self.cfg.snapshot_dir | |
| snapshot_dir = self.workdir / Path(snap_dir) | |
| snapshot_dir.mkdir(exist_ok=True, parents=True) | |
| return snapshot_dir | |
| def start_training(cfg, savedir, workdir): | |
| from train import Workspace as W | |
| root_dir = Path.cwd() | |
| cfg.workdir = str(root_dir) | |
| workspace = W(cfg, savedir, workdir) | |
| workspace.root_dir = root_dir | |
| snapshot = workspace.root_dir / 'last_snapshot.pt' | |
| if snapshot.exists(): | |
| print(f'resuming: {snapshot}') | |
| workspace.load_snapshot(workspace.root_dir) | |
| if cfg.use_wandb and wandb.run is None: | |
| # otherwise it was resumed | |
| workspace.setup_wandb() | |
| workspace.train() | |
| def main(cfg): | |
| start_training(cfg, None, None) | |
| if __name__ == '__main__': | |
| main() | |