Spaces:
Runtime error
Runtime error
Mel Nguyen (she/her)
commited on
Commit
·
a26c6e8
1
Parent(s):
457b136
Add files
Browse files- app.py +46 -0
- requirements.txt +3 -0
app.py
ADDED
|
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import transformers
|
| 2 |
+
import streamlit as st
|
| 3 |
+
|
| 4 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 5 |
+
|
| 6 |
+
tokenizer = AutoTokenizer.from_pretrained("VietAI/gpt-neo-1.3B-vietnamese-news")
|
| 7 |
+
@st.cache
|
| 8 |
+
def load_model(model_name):
|
| 9 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
| 10 |
+
return model
|
| 11 |
+
|
| 12 |
+
model = load_model("VietAI/gpt-neo-1.3B-vietnamese-news")
|
| 13 |
+
def infer(input_ids, max_length):
|
| 14 |
+
|
| 15 |
+
output_sequences = model.generate(
|
| 16 |
+
input_ids=input_ids,
|
| 17 |
+
max_length=max_length,
|
| 18 |
+
do_sample=True,
|
| 19 |
+
temperature=0.9,
|
| 20 |
+
top_k=20,
|
| 21 |
+
#top_p=top_p,
|
| 22 |
+
#num_return_sequences=1
|
| 23 |
+
)
|
| 24 |
+
|
| 25 |
+
return output_sequences
|
| 26 |
+
|
| 27 |
+
default_value = "Have fun!"
|
| 28 |
+
|
| 29 |
+
st.title("Write with Transformers 🦄")
|
| 30 |
+
st.write("Generate Vietnamese text from a given prompt")
|
| 31 |
+
|
| 32 |
+
sent = st.text_area("Text", default_value, height = 275)
|
| 33 |
+
max_length = st.sidebar.slider("Max Length", min_value = 10, max_value=30)
|
| 34 |
+
#temperature = st.sidebar.slider("Temperature", value = 1.0, min_value = 0.0, max_value=1.0, step=0.05)
|
| 35 |
+
#top_k = st.sidebar.slider("Top-k", min_value = 0, max_value=5, value = 0)
|
| 36 |
+
#top_p = st.sidebar.slider("Top-p", min_value = 0.0, max_value=1.0, step = 0.05, value = 0.9)
|
| 37 |
+
|
| 38 |
+
encoded_prompt = tokenizer.encode(sent, add_special_tokens=False, return_tensors="pt")
|
| 39 |
+
if encoded_prompt.size()[-1] == 0:
|
| 40 |
+
input_ids = None
|
| 41 |
+
else:
|
| 42 |
+
input_ids = encoded_prompt
|
| 43 |
+
|
| 44 |
+
gen_tokens = infer(encoded_prompt, max_length)
|
| 45 |
+
gen_text = tokenizer.batch_decode(gen_tokens)[0]
|
| 46 |
+
st.write(gen_text)
|
requirements.txt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
transformers
|
| 2 |
+
streamlit
|
| 3 |
+
torch
|