Spaces:
Sleeping
Sleeping
| # Import necessary libraries | |
| import numpy as np | |
| import joblib # For loading the serialized model | |
| import pandas as pd # For data manipulation | |
| from flask import Flask, request, jsonify # For creating the Flask API | |
| # Initialize Flask app with a name | |
| superkart_api = Flask("superkart_api") #Complete the code to define the name of the app | |
| # Load the trained churn prediction model | |
| model = joblib.load("/app/random_forest.joblib") #Corrected path for loading the model | |
| # Adding a comment to force a file change detection - this is a test | |
| # You can remove this comment later if the upload works | |
| # Define a route for the home page | |
| def home(): | |
| return "Welcome to the SuperKart Sales Forecasting API!" #Complete the code to define a welcome message | |
| # Define an endpoint to predict churn for a single customer | |
| def predict_sales(): | |
| # Get JSON data from the request | |
| data = request.get_json() | |
| # Extract relevant customer features from the input data. The order of the column names matters. | |
| sample = { | |
| 'Product_Weight': data['Product_Weight'], | |
| 'Product_Sugar_Content': data['Product_Sugar_Content'], | |
| 'Product_Allocated_Area': data['Product_Allocated_Area'], | |
| 'Product_MRP': data['Product_MRP'], | |
| 'Store_Size': data['Store_Size'], | |
| 'Store_Location_City_Type': data['Store_Location_City_Type'], | |
| 'Store_Type': data['Store_Type'], | |
| 'Product_Id_char': data['Product_Id_char'], | |
| 'Store_Age_Years': data['Store_Age_Years'], | |
| 'Product_Type_Category': data['Product_Type_Category'] | |
| } | |
| # Convert the extracted data into a DataFrame | |
| input_data = pd.DataFrame([sample]) | |
| # Make a churn prediction using the trained model | |
| prediction = model.predict(input_data).tolist()[0] | |
| # Return the prediction as a JSON response | |
| return jsonify({'Sales': prediction}) | |
| # Run the Flask app in debug mode | |
| if __name__ == '__main__': | |
| superkart_api.run(debug=True) | |