superkart-api / app.py
memopenaws's picture
Upload folder using huggingface_hub
496be1a verified
# Import necessary libraries
import numpy as np
import joblib # For loading the serialized model
import pandas as pd # For data manipulation
from flask import Flask, request, jsonify # For creating the Flask API
# Initialize Flask app with a name
superkart_api = Flask("superkart_api") #Complete the code to define the name of the app
# Load the trained churn prediction model
model = joblib.load("/app/random_forest.joblib") #Corrected path for loading the model
# Adding a comment to force a file change detection - this is a test
# You can remove this comment later if the upload works
# Define a route for the home page
@superkart_api.get('/')
def home():
return "Welcome to the SuperKart Sales Forecasting API!" #Complete the code to define a welcome message
# Define an endpoint to predict churn for a single customer
@superkart_api.post('/v1/predict')
def predict_sales():
# Get JSON data from the request
data = request.get_json()
# Extract relevant customer features from the input data. The order of the column names matters.
sample = {
'Product_Weight': data['Product_Weight'],
'Product_Sugar_Content': data['Product_Sugar_Content'],
'Product_Allocated_Area': data['Product_Allocated_Area'],
'Product_MRP': data['Product_MRP'],
'Store_Size': data['Store_Size'],
'Store_Location_City_Type': data['Store_Location_City_Type'],
'Store_Type': data['Store_Type'],
'Product_Id_char': data['Product_Id_char'],
'Store_Age_Years': data['Store_Age_Years'],
'Product_Type_Category': data['Product_Type_Category']
}
# Convert the extracted data into a DataFrame
input_data = pd.DataFrame([sample])
# Make a churn prediction using the trained model
prediction = model.predict(input_data).tolist()[0]
# Return the prediction as a JSON response
return jsonify({'Sales': prediction})
# Run the Flask app in debug mode
if __name__ == '__main__':
superkart_api.run(debug=True)