# Import necessary libraries import numpy as np import joblib # For loading the serialized model import pandas as pd # For data manipulation from flask import Flask, request, jsonify # For creating the Flask API # Initialize Flask app with a name superkart_api = Flask("superkart_api") #Complete the code to define the name of the app # Load the trained churn prediction model model = joblib.load("/app/random_forest.joblib") #Corrected path for loading the model # Adding a comment to force a file change detection - this is a test # You can remove this comment later if the upload works # Define a route for the home page @superkart_api.get('/') def home(): return "Welcome to the SuperKart Sales Forecasting API!" #Complete the code to define a welcome message # Define an endpoint to predict churn for a single customer @superkart_api.post('/v1/predict') def predict_sales(): # Get JSON data from the request data = request.get_json() # Extract relevant customer features from the input data. The order of the column names matters. sample = { 'Product_Weight': data['Product_Weight'], 'Product_Sugar_Content': data['Product_Sugar_Content'], 'Product_Allocated_Area': data['Product_Allocated_Area'], 'Product_MRP': data['Product_MRP'], 'Store_Size': data['Store_Size'], 'Store_Location_City_Type': data['Store_Location_City_Type'], 'Store_Type': data['Store_Type'], 'Product_Id_char': data['Product_Id_char'], 'Store_Age_Years': data['Store_Age_Years'], 'Product_Type_Category': data['Product_Type_Category'] } # Convert the extracted data into a DataFrame input_data = pd.DataFrame([sample]) # Make a churn prediction using the trained model prediction = model.predict(input_data).tolist()[0] # Return the prediction as a JSON response return jsonify({'Sales': prediction}) # Run the Flask app in debug mode if __name__ == '__main__': superkart_api.run(debug=True)