import streamlit as st import requests st.title("SuperKart Sales Forecasting") #Complete the code to define the title of the app. # Input fields for product and store data Product_Weight = st.number_input("Product Weight", min_value=0.0, value=12.66) Product_Sugar_Content = st.selectbox("Product Sugar Content", ["Low Sugar", "Regular", "No Sugar"]) Product_Allocated_Area = st.number_input("Product Allocated Area", min_value=0.0, max_value=100.0, value=10.0) #Complete the code to define the UI element for Product_Allocated_Area Product_MRP = st.number_input("Product MRP", min_value=0.0, max_value=1000.0, value=100.0) #Complete the code to define the UI element for Product_MRP Store_Size = st.selectbox("Store Size", ["Small", "Medium", "High"]) #Complete the code to define the UI element for Store_Size Store_Location_City_Type = st.selectbox("Store Location City Type", ["Tier 1", "Tier 2", "Tier 3"]) #Complete the code to define the UI element for Store_Location_City_Type Store_Type = st.selectbox("Store Type", ["Supermarket Type1", "Supermarket Type2", "Supermarket Type3", "Grocery Store"]) #Complete the code to define the UI element for Store_Type Product_Id_char = st.selectbox("Product ID Char", ["FD", "DR", "NC"]) #Complete the code to define the UI element for Product_Id_char Store_Age_Years = st.number_input("Store Age (Years)", min_value=0, max_value=50, value=10) #Complete the code to define the UI element for Store_Age_Years Product_Type_Category = st.selectbox("Product Type Category", ["Perishable", "Non-Perishable"]) #Complete the code to define the UI element for Product_Type_Category product_data = { "Product_Weight": Product_Weight, "Product_Sugar_Content": Product_Sugar_Content, "Product_Allocated_Area": Product_Allocated_Area, "Product_MRP": Product_MRP, "Store_Size": Store_Size, "Store_Location_City_Type": Store_Location_City_Type, "Store_Type": Store_Type, "Product_Id_char": Product_Id_char, "Store_Age_Years": Store_Age_Years, "Product_Type_Category": Product_Type_Category } if st.button("Predict", type='primary'): response = requests.post("https://memopenaws-superkart-api.hf.space/v1/predict", json=product_data) # Complete the code to enter user name and space name to correctly define the endpoint if response.status_code == 200: result = response.json() predicted_sales = result["Sales"] st.write(f"Predicted Product Store Sales Total: ₹{predicted_sales:.2f}") else: st.error("Error in API request")