Spaces:
Runtime error
Runtime error
| import enum | |
| import math | |
| import numpy as np | |
| import torch as th | |
| ########################################################################################## | |
| # DIFFUSION CODE BASE FOR PROTEIN SEQUENCE DIFFUSION WAS ADAPTED FROM LM-DIFFUSION # | |
| # (https://github.com/XiangLi1999/Diffusion-LM) # | |
| ########################################################################################## | |
| class GaussianDiffusion_SEQDIFF: | |
| """ | |
| T = number of timesteps to set up diffuser with | |
| schedule = type of noise schedule to use linear, cosine, gaussian | |
| noise = type of ditribution to sample from; DEFAULT - normal_gaussian | |
| """ | |
| def __init__(self, | |
| T=1000, | |
| schedule='sqrt', | |
| sample_distribution='normal', | |
| sample_distribution_gmm_means=[-1.0, 1.0], | |
| sample_distribution_gmm_variances=[1.0, 1.0], | |
| F=1, | |
| ): | |
| # Use float64 for accuracy. | |
| betas = np.array(get_named_beta_schedule(schedule, T), dtype=np.float64) | |
| self.betas = betas | |
| assert len(betas.shape) == 1, "betas must be 1-D" | |
| assert (betas > 0).all() and (betas <= 1).all() | |
| self.num_timesteps = int(betas.shape[0]) | |
| self.F = F | |
| alphas = 1.0 - betas | |
| self.alphas_cumprod = np.cumprod(alphas, axis=0) | |
| self.alphas_cumprod_prev = np.append(1.0, self.alphas_cumprod[:-1]) | |
| self.alphas_cumprod_next = np.append(self.alphas_cumprod[1:], 0.0) | |
| assert self.alphas_cumprod_prev.shape == (self.num_timesteps,) | |
| # calculations for posterior q(x_{t-1} | x_t, x_0) | |
| self.posterior_variance = (betas * (1.0 - self.alphas_cumprod_prev) / (1.0 - self.alphas_cumprod)) | |
| # log calculation clipped because the posterior variance is 0 at the | |
| # beginning of the diffusion chain. | |
| self.posterior_log_variance_clipped = np.log(np.append(self.posterior_variance[1], self.posterior_variance[1:])) | |
| self.posterior_mean_coef1 = (betas * np.sqrt(self.alphas_cumprod_prev) / (1.0 - self.alphas_cumprod)) | |
| self.posterior_mean_coef2 = ((1.0 - self.alphas_cumprod_prev) * np.sqrt(alphas) / (1.0 - self.alphas_cumprod)) | |
| # calculations for diffusion q(x_t | x_{t-1}) and others | |
| self.sqrt_alphas_cumprod = np.sqrt(self.alphas_cumprod) | |
| self.sqrt_one_minus_alphas_cumprod = np.sqrt(1.0 - self.alphas_cumprod) | |
| self.log_one_minus_alphas_cumprod = np.log(1.0 - self.alphas_cumprod) | |
| self.sqrt_recip_alphas_cumprod = np.sqrt(1.0 / self.alphas_cumprod) | |
| # sample_distribution_params | |
| self.sample_distribution = sample_distribution | |
| self.sample_distribution_gmm_means = [float(mean) for mean in sample_distribution_gmm_means] | |
| self.sample_distribution_gmm_variances = [float(variance) for variance in sample_distribution_gmm_variances] | |
| if self.sample_distribution == 'normal': | |
| self.noise_function = th.randn_like | |
| else: | |
| self.noise_function = self.randnmixture_like | |
| def q_mean_variance(self, x_start, t): | |
| """ | |
| Get the distribution q(x_t | x_0). | |
| :param x_start: the [N x C x ...] tensor of noiseless inputs. | |
| :param t: the number of diffusion steps (minus 1). Here, 0 means one step. | |
| :return: A tuple (mean, variance, log_variance), all of x_start's shape. | |
| """ | |
| mean = ( | |
| _extract(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start | |
| ) | |
| variance = _extract(1.0 - self.alphas_cumprod, t, x_start.shape) | |
| log_variance = _extract( | |
| self.log_one_minus_alphas_cumprod, t, x_start.shape | |
| ) | |
| return mean, variance, log_variance | |
| def q_sample(self, x_start, t, mask=None, DEVICE=None): | |
| """ | |
| Diffuse the data for a given number of diffusion steps. | |
| In other words, sample from q(x_t | x_0). | |
| :param x_start: the initial data batch. | |
| :param t: the number of diffusion steps (minus 1). Here, 0 means one step. | |
| :param noise: if specified, the split-out normal noise. | |
| :return: A noisy version of x_start. | |
| """ | |
| # noise_function is determined in init depending on type of noise specified | |
| noise = self.noise_function(x_start)*(self.F**2) | |
| if DEVICE != None: | |
| noise = noise.to(DEVICE) | |
| assert noise.shape == x_start.shape | |
| x_sample = ( | |
| _extract(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start | |
| + _extract(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) | |
| * noise) | |
| if mask is not None: | |
| x_sample[mask]=x_start[mask] | |
| return x_sample | |
| def q_posterior_mean_variance(self, x_start, x_t, t): | |
| """ | |
| Compute the mean and variance of the diffusion posterior: | |
| q(x_{t-1} | x_t, x_0) | |
| """ | |
| assert x_start.shape == x_t.shape | |
| posterior_mean = (_extract(self.posterior_mean_coef1, t, x_t.shape) * x_start | |
| + _extract(self.posterior_mean_coef2, t, x_t.shape) * x_t) | |
| posterior_variance = _extract(self.posterior_variance, t, x_t.shape) | |
| posterior_log_variance_clipped = _extract(self.posterior_log_variance_clipped, t, x_t.shape) | |
| assert ( | |
| posterior_mean.shape[0] | |
| == posterior_variance.shape[0] | |
| == posterior_log_variance_clipped.shape[0] | |
| == x_start.shape[0] | |
| ) | |
| return posterior_mean, posterior_variance, posterior_log_variance_clipped | |
| def randnmixture_like(self, tensor_like, number_normal=3, weights_normal=None): | |
| if self.sample_distribution_gmm_means and self.sample_distribution_gmm_variances: | |
| assert len(self.sample_distribution_gmm_means) == len(self.sample_distribution_gmm_variances) | |
| if not weights_normal: | |
| mix = th.distributions.Categorical(th.ones(len(self.sample_distribution_gmm_means))) #number_normal | |
| else: | |
| assert len(weights_normal) == number_normal | |
| mix = th.distributions.Categorical(weights_normal) | |
| #comp = torch.distributions.Normal(torch.randn(number_normal), torch.rand(number_normal)) | |
| comp = th.distributions.Normal(th.tensor(self.sample_distribution_gmm_means), th.tensor(self.sample_distribution_gmm_variances)) | |
| #comp = torch.distributions.Normal([-3, 3], [1, 1]) | |
| #comp = torch.distributions.Normal([-3, 0, 3], [1, 1, 1]) | |
| #comp = torch.distributions.Normal([-3, 0, 3], [1, 1, 1]) | |
| gmm = th.distributions.mixture_same_family.MixtureSameFamily(mix, comp) | |
| return th.tensor([gmm.sample() for _ in range(np.prod(tensor_like.shape))]).reshape(tensor_like.shape) | |
| def get_named_beta_schedule(schedule_name, num_diffusion_timesteps): | |
| """ | |
| Get a pre-defined beta schedule for the given name. | |
| The beta schedule library consists of beta schedules which remain similar | |
| in the limit of num_diffusion_timesteps. | |
| Beta schedules may be added, but should not be removed or changed once | |
| they are committed to maintain backwards compatibility. | |
| """ | |
| if schedule_name == "linear": | |
| # Linear schedule from Ho et al, extended to work for any number of | |
| # diffusion steps. | |
| scale = 1000 / num_diffusion_timesteps | |
| beta_start = scale * 0.0001 | |
| beta_end = scale * 0.02 | |
| return np.linspace(beta_start, beta_end, num_diffusion_timesteps, dtype=np.float64) | |
| elif schedule_name == "cosine": | |
| return betas_for_alpha_bar(num_diffusion_timesteps, lambda t: math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2,) | |
| elif schedule_name == 'sqrt': | |
| return betas_for_alpha_bar(num_diffusion_timesteps, lambda t: 1-np.sqrt(t + 0.0001),) | |
| else: | |
| raise NotImplementedError(f"unknown beta schedule: {schedule_name}") | |
| def betas_for_alpha_bar(num_diffusion_timesteps, alpha_bar, max_beta=0.999): | |
| """ | |
| Create a beta schedule that discretizes the given alpha_t_bar function, | |
| which defines the cumulative product of (1-beta) over time from t = [0,1]. | |
| :param num_diffusion_timesteps: the number of betas to produce. | |
| :param alpha_bar: a lambda that takes an argument t from 0 to 1 and | |
| produces the cumulative product of (1-beta) up to that | |
| part of the diffusion process. | |
| :param max_beta: the maximum beta to use; use values lower than 1 to | |
| prevent singularities. | |
| """ | |
| betas = [] | |
| for i in range(num_diffusion_timesteps): | |
| t1 = i / num_diffusion_timesteps | |
| t2 = (i + 1) / num_diffusion_timesteps | |
| betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta)) | |
| return np.array(betas) | |
| def _extract(arr, timesteps, broadcast_shape): | |
| """ | |
| Extract values from a 1-D numpy array for a batch of indices. | |
| :param arr: the 1-D numpy array. | |
| :param timesteps: a tensor of indices into the array to extract. | |
| :param broadcast_shape: a larger shape of K dimensions with the batch | |
| dimension equal to the length of timesteps. | |
| :return: a tensor of shape [batch_size, 1, ...] where the shape has K dims. | |
| """ | |
| res = th.from_numpy(arr).to(device=timesteps.device)[timesteps].float() | |
| while len(res.shape) < len(broadcast_shape): | |
| res = res[..., None] | |
| return res.expand(broadcast_shape) | |