Spaces:
Runtime error
Runtime error
| # Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved. | |
| # | |
| # Permission is hereby granted, free of charge, to any person obtaining a | |
| # copy of this software and associated documentation files (the "Software"), | |
| # to deal in the Software without restriction, including without limitation | |
| # the rights to use, copy, modify, merge, publish, distribute, sublicense, | |
| # and/or sell copies of the Software, and to permit persons to whom the | |
| # Software is furnished to do so, subject to the following conditions: | |
| # | |
| # The above copyright notice and this permission notice shall be included in | |
| # all copies or substantial portions of the Software. | |
| # | |
| # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
| # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | |
| # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL | |
| # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | |
| # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING | |
| # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER | |
| # DEALINGS IN THE SOFTWARE. | |
| # | |
| # SPDX-FileCopyrightText: Copyright (c) 2021 NVIDIA CORPORATION & AFFILIATES | |
| # SPDX-License-Identifier: MIT | |
| import torch.distributed as dist | |
| from abc import ABC | |
| from torch.utils.data import DataLoader, DistributedSampler, Dataset | |
| from se3_transformer.runtime.utils import get_local_rank | |
| def _get_dataloader(dataset: Dataset, shuffle: bool, **kwargs) -> DataLoader: | |
| # Classic or distributed dataloader depending on the context | |
| sampler = DistributedSampler(dataset, shuffle=shuffle) if dist.is_initialized() else None | |
| return DataLoader(dataset, shuffle=(shuffle and sampler is None), sampler=sampler, **kwargs) | |
| class DataModule(ABC): | |
| """ Abstract DataModule. Children must define self.ds_{train | val | test}. """ | |
| def __init__(self, **dataloader_kwargs): | |
| super().__init__() | |
| if get_local_rank() == 0: | |
| self.prepare_data() | |
| # Wait until rank zero has prepared the data (download, preprocessing, ...) | |
| if dist.is_initialized(): | |
| dist.barrier(device_ids=[get_local_rank()]) | |
| self.dataloader_kwargs = {'pin_memory': True, 'persistent_workers': True, **dataloader_kwargs} | |
| self.ds_train, self.ds_val, self.ds_test = None, None, None | |
| def prepare_data(self): | |
| """ Method called only once per node. Put here any downloading or preprocessing """ | |
| pass | |
| def train_dataloader(self) -> DataLoader: | |
| return _get_dataloader(self.ds_train, shuffle=True, **self.dataloader_kwargs) | |
| def val_dataloader(self) -> DataLoader: | |
| return _get_dataloader(self.ds_val, shuffle=False, **self.dataloader_kwargs) | |
| def test_dataloader(self) -> DataLoader: | |
| return _get_dataloader(self.ds_test, shuffle=False, **self.dataloader_kwargs) | |