Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,22 +1,6 @@
|
|
| 1 |
import streamlit as st
|
| 2 |
from transformers import pipeline, AutoModelForImageClassification, AutoFeatureExtractor
|
| 3 |
from PIL import Image
|
| 4 |
-
import openai
|
| 5 |
-
import os
|
| 6 |
-
from dotenv import load_dotenv
|
| 7 |
-
|
| 8 |
-
# =======================
|
| 9 |
-
# Load Environment Variables from .env File
|
| 10 |
-
# =======================
|
| 11 |
-
load_dotenv() # Explicitly load the .env file
|
| 12 |
-
|
| 13 |
-
# Set OpenAI API key
|
| 14 |
-
openai.api_key = os.getenv("OPENAI_API_KEY")
|
| 15 |
-
|
| 16 |
-
# Debugging: Check if API key is loaded
|
| 17 |
-
if not openai.api_key or not openai.api_key.startswith("sk-"):
|
| 18 |
-
st.error("OpenAI API key is not set or is invalid. Please check the `.env` file or your environment variable setup.")
|
| 19 |
-
st.stop()
|
| 20 |
|
| 21 |
# =======================
|
| 22 |
# Streamlit Page Config
|
|
@@ -35,7 +19,6 @@ st.set_page_config(
|
|
| 35 |
def load_model():
|
| 36 |
"""
|
| 37 |
Load the pre-trained skin cancer classification model using PyTorch.
|
| 38 |
-
Use the AutoModelForImageClassification and AutoFeatureExtractor for explicit local caching.
|
| 39 |
"""
|
| 40 |
try:
|
| 41 |
extractor = AutoFeatureExtractor.from_pretrained("Anwarkh1/Skin_Cancer-Image_Classification")
|
|
@@ -48,28 +31,33 @@ def load_model():
|
|
| 48 |
model = load_model()
|
| 49 |
|
| 50 |
# =======================
|
| 51 |
-
#
|
| 52 |
# =======================
|
| 53 |
-
def
|
| 54 |
"""
|
| 55 |
-
Generate a
|
| 56 |
"""
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
|
|
|
|
|
|
|
|
|
| 69 |
)
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
|
|
|
|
|
|
| 73 |
|
| 74 |
# =======================
|
| 75 |
# Streamlit App Title and Sidebar
|
|
@@ -116,8 +104,7 @@ if uploaded_image:
|
|
| 116 |
st.error("Low confidence in the prediction. Results should be interpreted with caution.")
|
| 117 |
|
| 118 |
# Generate explanation
|
| 119 |
-
|
| 120 |
-
explanation = generate_openai_explanation(label, confidence)
|
| 121 |
|
| 122 |
st.markdown("### Explanation")
|
| 123 |
st.write(explanation)
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
from transformers import pipeline, AutoModelForImageClassification, AutoFeatureExtractor
|
| 3 |
from PIL import Image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
|
| 5 |
# =======================
|
| 6 |
# Streamlit Page Config
|
|
|
|
| 19 |
def load_model():
|
| 20 |
"""
|
| 21 |
Load the pre-trained skin cancer classification model using PyTorch.
|
|
|
|
| 22 |
"""
|
| 23 |
try:
|
| 24 |
extractor = AutoFeatureExtractor.from_pretrained("Anwarkh1/Skin_Cancer-Image_Classification")
|
|
|
|
| 31 |
model = load_model()
|
| 32 |
|
| 33 |
# =======================
|
| 34 |
+
# Local Explanation Generator
|
| 35 |
# =======================
|
| 36 |
+
def generate_local_explanation(label, confidence):
|
| 37 |
"""
|
| 38 |
+
Generate a simple explanation for the classification result.
|
| 39 |
"""
|
| 40 |
+
explanations = {
|
| 41 |
+
"Melanoma": (
|
| 42 |
+
"Melanoma is a serious type of skin cancer that develops in the cells that produce melanin. "
|
| 43 |
+
"If detected early, it is often treatable. You should consult a dermatologist immediately."
|
| 44 |
+
),
|
| 45 |
+
"Basal Cell Carcinoma": (
|
| 46 |
+
"Basal Cell Carcinoma is a common form of skin cancer that grows slowly and is typically not life-threatening. "
|
| 47 |
+
"Still, it requires medical attention to prevent further complications."
|
| 48 |
+
),
|
| 49 |
+
"Benign Lesion": (
|
| 50 |
+
"A benign lesion is a non-cancerous growth on the skin. While it is usually harmless, "
|
| 51 |
+
"consulting a dermatologist can help ensure no further treatment is needed."
|
| 52 |
+
),
|
| 53 |
+
"Other": (
|
| 54 |
+
"The AI could not confidently classify the lesion. It's strongly recommended to consult a dermatologist for further evaluation."
|
| 55 |
)
|
| 56 |
+
}
|
| 57 |
+
|
| 58 |
+
explanation = explanations.get(label, explanations["Other"])
|
| 59 |
+
confidence_msg = f"The model is {confidence:.2%} confident in this prediction. "
|
| 60 |
+
return confidence_msg + explanation
|
| 61 |
|
| 62 |
# =======================
|
| 63 |
# Streamlit App Title and Sidebar
|
|
|
|
| 104 |
st.error("Low confidence in the prediction. Results should be interpreted with caution.")
|
| 105 |
|
| 106 |
# Generate explanation
|
| 107 |
+
explanation = generate_local_explanation(label, confidence)
|
|
|
|
| 108 |
|
| 109 |
st.markdown("### Explanation")
|
| 110 |
st.write(explanation)
|