|
|
""" |
|
|
app.py — Gradio front‑end + smolagents CodeAgent |
|
|
================================================ |
|
|
|
|
|
This version avoids private/gated models and works on any free Hugging Face |
|
|
Space **without extra secrets**. It relies on: |
|
|
|
|
|
* `mcp_server.py` sitting next to this file |
|
|
* A public chat‑completion capable model exposed via the HF Inference API |
|
|
(defaults to **microsoft/Phi‑3‑mini‑4k‑instruct**, ~3 B params, free‑tier‑OK) |
|
|
* `smolagents[mcp]` for the agent loop |
|
|
* **Optional**: set `HF_MODEL_ID` or `HF_API_TOKEN` in **Settings → Secrets** |
|
|
if you want a different (or gated) model. |
|
|
|
|
|
If you hit the free‑tier rate‑limit you can still point to OpenAI by setting the |
|
|
env var `OPENAI_API_KEY` — the code will auto‑switch to OpenAI chat. |
|
|
""" |
|
|
import os |
|
|
import pathlib |
|
|
import gradio as gr |
|
|
from mcp import StdioServerParameters |
|
|
from smolagents import MCPClient, CodeAgent, InferenceClientModel |
|
|
|
|
|
|
|
|
SERVER_PATH = pathlib.Path(__file__).with_name("mcp_server.py") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
OPENAI_KEY = os.getenv("OPENAI_API_KEY") |
|
|
HF_MODEL_ID = os.getenv("HF_MODEL_ID", "microsoft/Phi-3-mini-4k-instruct") |
|
|
|
|
|
if OPENAI_KEY: |
|
|
from smolagents.models import OpenAIChatModel |
|
|
BASE_MODEL = OpenAIChatModel() |
|
|
else: |
|
|
BASE_MODEL = InferenceClientModel(model_id=HF_MODEL_ID) |
|
|
|
|
|
|
|
|
|
|
|
def respond(message: str, history: list): |
|
|
"""Run the user prompt through a CodeAgent that can call MCP SQL tools.""" |
|
|
params = StdioServerParameters(command="python", args=[str(SERVER_PATH)]) |
|
|
|
|
|
with MCPClient(params) as tools: |
|
|
agent = CodeAgent(tools=tools, model=BASE_MODEL) |
|
|
answer = agent.run(message) |
|
|
|
|
|
|
|
|
history.append({"role": "user", "content": message}) |
|
|
history.append({"role": "assistant", "content": answer}) |
|
|
return history, history |
|
|
|
|
|
|
|
|
|
|
|
with gr.Blocks(title="Enterprise SQL Agent") as demo: |
|
|
chat_state = gr.State([]) |
|
|
gr.Markdown("## Enterprise SQL Agent — ask natural‑language questions about your data 🏢➡️📊") |
|
|
|
|
|
chatbot = gr.Chatbot(type="messages", label="Chat") |
|
|
textbox = gr.Textbox(placeholder="e.g. Who are my inactive Northeast customers?", show_label=False) |
|
|
textbox.submit(respond, [textbox, chat_state], [chatbot, chat_state]) |
|
|
|
|
|
with gr.Accordion("Example prompts"): |
|
|
gr.Markdown( |
|
|
""" |
|
|
* Who are my **Northeast** customers with no orders in 6 months? |
|
|
* List customers sorted by **LastOrderDate**. |
|
|
* Draft re‑engagement emails for inactive accounts. |
|
|
""" |
|
|
) |
|
|
|
|
|
gr.Markdown( |
|
|
"_Powered by MCP + smolagents + Gradio • Model: {}_".format( |
|
|
"OpenAI (gpt‑4o)" if OPENAI_KEY else HF_MODEL_ID |
|
|
) |
|
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
|
demo.launch() |
|
|
|