|
|
""" |
|
|
app.py β Enterprise SQL Agent (Gradio + smolagents + MCP) |
|
|
|
|
|
SECRETS / ENV VARS |
|
|
------------------ |
|
|
OPENAI_API_KEY β use OpenAI (default model gpt-4o, override with OPENAI_MODEL) |
|
|
GOOGLE_API_KEY β use Gemini-Pro (override model with GOOGLE_MODEL) |
|
|
HF_MODEL_ID β repo that exposes Chat-Completion (fallback if no keys) |
|
|
HF_API_TOKEN β token if that repo is gated |
|
|
|
|
|
FILE LAYOUT |
|
|
----------- |
|
|
app.py |
|
|
mcp_server.py # your FastMCP SQL tool server |
|
|
requirements.txt # see bottom of this file |
|
|
""" |
|
|
|
|
|
import os, pathlib, gradio as gr |
|
|
from mcp import StdioServerParameters |
|
|
from smolagents import MCPClient, CodeAgent |
|
|
from smolagents.models import LiteLLMModel, InferenceClientModel |
|
|
|
|
|
|
|
|
OPENAI_KEY = os.getenv("OPENAI_API_KEY") |
|
|
OPENAI_MODEL = os.getenv("OPENAI_MODEL", "gpt-4o") |
|
|
|
|
|
GEMINI_KEY = os.getenv("GOOGLE_API_KEY") |
|
|
GEM_MODEL = os.getenv("GOOGLE_MODEL", "gemini-pro") |
|
|
|
|
|
HF_MODEL_ID = os.getenv("HF_MODEL_ID", "microsoft/Phi-3-mini-4k-instruct") |
|
|
HF_TOKEN = os.getenv("HF_API_TOKEN") |
|
|
|
|
|
if OPENAI_KEY: |
|
|
BASE_MODEL = LiteLLMModel(model_id=f"openai/{OPENAI_MODEL}", api_key=OPENAI_KEY) |
|
|
ACTIVE = f"OpenAI Β· {OPENAI_MODEL}" |
|
|
elif GEMINI_KEY: |
|
|
BASE_MODEL = LiteLLMModel(model_id=f"google/{GEM_MODEL}", api_key=GEMINI_KEY) |
|
|
ACTIVE = f"Gemini Β· {GEM_MODEL}" |
|
|
else: |
|
|
BASE_MODEL = InferenceClientModel(model_id=HF_MODEL_ID, hf_api_token=HF_TOKEN) |
|
|
ACTIVE = f"Hugging Face Β· {HF_MODEL_ID}" |
|
|
|
|
|
|
|
|
SERVER_PATH = pathlib.Path(__file__).with_name("mcp_server.py") |
|
|
|
|
|
|
|
|
def respond(msg: str, history: list): |
|
|
"""Run prompt β CodeAgent β MCP tools β safe string reply.""" |
|
|
params = StdioServerParameters(command="python", args=[str(SERVER_PATH)]) |
|
|
|
|
|
with MCPClient(params) as tools: |
|
|
agent = CodeAgent(tools=tools, model=BASE_MODEL) |
|
|
raw = agent.run(msg) |
|
|
|
|
|
|
|
|
if not isinstance(raw, str): |
|
|
import json, pprint |
|
|
try: |
|
|
raw = json.dumps(raw, indent=2, ensure_ascii=False) |
|
|
except (TypeError, ValueError): |
|
|
raw = pprint.pformat(raw) |
|
|
reply = raw |
|
|
|
|
|
history += [ |
|
|
{"role": "user", "content": msg}, |
|
|
{"role": "assistant", "content": reply}, |
|
|
] |
|
|
return history, history |
|
|
|
|
|
|
|
|
with gr.Blocks(title="Enterprise SQL Agent") as demo: |
|
|
state = gr.State([]) |
|
|
gr.Markdown("## π’ Enterprise SQL Agent β ask natural-language questions about your data") |
|
|
|
|
|
chat = gr.Chatbot(type="messages", label="Conversation") |
|
|
box = gr.Textbox( |
|
|
placeholder="e.g. Who are my Northeast customers with no orders in 6 months?", |
|
|
show_label=False, |
|
|
) |
|
|
box.submit(respond, [box, state], [chat, state]) |
|
|
|
|
|
with gr.Accordion("Example prompts", open=False): |
|
|
gr.Markdown( |
|
|
"* Who are my **Northeast** customers with no orders in 6 months?\n" |
|
|
"* List customers sorted by **LastOrderDate**.\n" |
|
|
"* Draft re-engagement emails for inactive accounts." |
|
|
) |
|
|
|
|
|
gr.Markdown(f"_Powered by MCP + smolagents + Gradio β’ Active model β **{ACTIVE}**_") |
|
|
|
|
|
if __name__ == "__main__": |
|
|
demo.launch() |
|
|
|