Update app.py
Browse files
app.py
CHANGED
|
@@ -1,114 +1,133 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
from huggingface_hub import InferenceClient
|
|
|
|
| 3 |
|
| 4 |
# Initialize the Hugging Face Inference Client
|
| 5 |
client = InferenceClient()
|
| 6 |
|
| 7 |
-
# Function to
|
| 8 |
-
def
|
| 9 |
"""
|
| 10 |
-
|
| 11 |
|
| 12 |
Args:
|
| 13 |
-
selected_topic (str):
|
| 14 |
-
subtopic (str): Specific subtopic
|
| 15 |
-
|
|
|
|
| 16 |
examples_count (int): Number of examples to generate.
|
|
|
|
| 17 |
|
| 18 |
-
|
| 19 |
-
str:
|
| 20 |
"""
|
| 21 |
-
#
|
| 22 |
prompt = (
|
| 23 |
-
f"Generate {examples_count}
|
| 24 |
-
f"
|
| 25 |
-
|
| 26 |
-
|
| 27 |
)
|
| 28 |
messages = [{"role": "user", "content": prompt}]
|
| 29 |
|
| 30 |
try:
|
| 31 |
-
#
|
| 32 |
-
|
| 33 |
-
model="Qwen/Qwen2.5-Coder-32B-Instruct",
|
| 34 |
messages=messages,
|
| 35 |
temperature=0.5,
|
| 36 |
max_tokens=1024,
|
| 37 |
-
top_p=0.7
|
| 38 |
-
stream=True
|
| 39 |
)
|
|
|
|
| 40 |
|
| 41 |
-
#
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 46 |
except Exception as e:
|
| 47 |
-
|
| 48 |
|
| 49 |
# Create the Gradio interface
|
| 50 |
with gr.Blocks() as app:
|
| 51 |
-
# App Title
|
| 52 |
-
gr.Markdown("##
|
| 53 |
-
gr.Markdown(
|
| 54 |
-
"Generate tailored lessons, problem-solving examples, or code snippets for Math, STEM, "
|
| 55 |
-
"or Computer Science. Select a topic, subtopic, and customize your experience!"
|
| 56 |
-
)
|
| 57 |
|
| 58 |
with gr.Row():
|
| 59 |
-
# Input
|
| 60 |
with gr.Column():
|
| 61 |
selected_topic = gr.Radio(
|
| 62 |
-
choices=["Math", "STEM", "
|
| 63 |
label="Select a Topic",
|
| 64 |
-
value="Math"
|
| 65 |
)
|
| 66 |
subtopic = gr.Textbox(
|
| 67 |
-
lines=1,
|
| 68 |
label="Subtopic",
|
| 69 |
-
placeholder="
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 70 |
)
|
| 71 |
input_text = gr.Textbox(
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
)
|
| 76 |
examples_count = gr.Slider(
|
| 77 |
minimum=1,
|
| 78 |
maximum=5,
|
| 79 |
-
value=1,
|
| 80 |
step=1,
|
| 81 |
-
label="Number of Examples"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 82 |
)
|
| 83 |
generate_button = gr.Button("Generate Content")
|
| 84 |
|
| 85 |
-
# Output
|
| 86 |
with gr.Column():
|
| 87 |
-
gr.Markdown("###
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
interactive=False
|
| 92 |
)
|
| 93 |
-
|
| 94 |
|
| 95 |
-
# Link the
|
| 96 |
generate_button.click(
|
| 97 |
-
fn=
|
| 98 |
-
inputs=[selected_topic, subtopic, input_text, examples_count],
|
| 99 |
-
outputs=
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 100 |
)
|
|
|
|
| 101 |
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
with open("generated_code.py", "w") as file:
|
| 105 |
-
file.write(content)
|
| 106 |
-
return "Code exported successfully to generated_code.py!"
|
| 107 |
|
| 108 |
-
|
| 109 |
-
fn=
|
| 110 |
-
inputs=[
|
| 111 |
-
outputs=[
|
| 112 |
)
|
| 113 |
|
| 114 |
# Launch the Gradio app
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
from huggingface_hub import InferenceClient
|
| 3 |
+
import tempfile
|
| 4 |
|
| 5 |
# Initialize the Hugging Face Inference Client
|
| 6 |
client = InferenceClient()
|
| 7 |
|
| 8 |
+
# Function to generate dynamic lessons, examples, or code
|
| 9 |
+
def generate_content(selected_topic, subtopic, complexity, input_text, examples_count, output_type):
|
| 10 |
"""
|
| 11 |
+
Generate content dynamically based on user input.
|
| 12 |
|
| 13 |
Args:
|
| 14 |
+
selected_topic (str): Topic selected by the user.
|
| 15 |
+
subtopic (str): Specific subtopic for generation.
|
| 16 |
+
complexity (str): User expertise level.
|
| 17 |
+
input_text (str): Additional input context.
|
| 18 |
examples_count (int): Number of examples to generate.
|
| 19 |
+
output_type (str): Desired output format.
|
| 20 |
|
| 21 |
+
Returns:
|
| 22 |
+
str or dict: Generated content in the selected format.
|
| 23 |
"""
|
| 24 |
+
# Build the prompt dynamically
|
| 25 |
prompt = (
|
| 26 |
+
f"Generate {examples_count} {complexity.lower()}-level {selected_topic.lower()} examples, lessons, "
|
| 27 |
+
f"or problems related to {subtopic}. Context: {input_text}" if input_text.strip()
|
| 28 |
+
else f"Generate {examples_count} {complexity.lower()}-level {selected_topic.lower()} lessons "
|
| 29 |
+
f"or problems focused on {subtopic}."
|
| 30 |
)
|
| 31 |
messages = [{"role": "user", "content": prompt}]
|
| 32 |
|
| 33 |
try:
|
| 34 |
+
# Generate the content using the model
|
| 35 |
+
response = client.chat.completions.create(
|
| 36 |
+
model="Qwen/Qwen2.5-Coder-32B-Instruct",
|
| 37 |
messages=messages,
|
| 38 |
temperature=0.5,
|
| 39 |
max_tokens=1024,
|
| 40 |
+
top_p=0.7
|
|
|
|
| 41 |
)
|
| 42 |
+
content = response.choices[0].message.content
|
| 43 |
|
| 44 |
+
# Adjust the output based on the selected type
|
| 45 |
+
if output_type == "LaTeX":
|
| 46 |
+
return {"content": content, "latex": True}
|
| 47 |
+
elif output_type == "Downloadable":
|
| 48 |
+
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".txt")
|
| 49 |
+
with open(temp_file.name, "w") as file:
|
| 50 |
+
file.write(content)
|
| 51 |
+
return {"file": temp_file.name}
|
| 52 |
+
else:
|
| 53 |
+
return content
|
| 54 |
except Exception as e:
|
| 55 |
+
return f"Error: {e}"
|
| 56 |
|
| 57 |
# Create the Gradio interface
|
| 58 |
with gr.Blocks() as app:
|
| 59 |
+
# App Title
|
| 60 |
+
gr.Markdown("## π Advanced STEM and Code Generator with Interactive Features")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 61 |
|
| 62 |
with gr.Row():
|
| 63 |
+
# Input Panel
|
| 64 |
with gr.Column():
|
| 65 |
selected_topic = gr.Radio(
|
| 66 |
+
choices=["Math", "STEM", "Code Generation"],
|
| 67 |
label="Select a Topic",
|
| 68 |
+
value="Math"
|
| 69 |
)
|
| 70 |
subtopic = gr.Textbox(
|
|
|
|
| 71 |
label="Subtopic",
|
| 72 |
+
placeholder="E.g., Algebra, Physics, Sorting Algorithms"
|
| 73 |
+
)
|
| 74 |
+
complexity = gr.Radio(
|
| 75 |
+
choices=["Beginner", "Intermediate", "Advanced"],
|
| 76 |
+
label="Expertise Level",
|
| 77 |
+
value="Beginner"
|
| 78 |
)
|
| 79 |
input_text = gr.Textbox(
|
| 80 |
+
label="Additional Context",
|
| 81 |
+
placeholder="E.g., 'Explain integration basics' or 'Generate Python code for searching.'",
|
| 82 |
+
lines=3
|
| 83 |
)
|
| 84 |
examples_count = gr.Slider(
|
| 85 |
minimum=1,
|
| 86 |
maximum=5,
|
|
|
|
| 87 |
step=1,
|
| 88 |
+
label="Number of Examples",
|
| 89 |
+
value=1
|
| 90 |
+
)
|
| 91 |
+
output_type = gr.Radio(
|
| 92 |
+
choices=["Plain Text", "LaTeX", "Downloadable"],
|
| 93 |
+
label="Output Format",
|
| 94 |
+
value="Plain Text"
|
| 95 |
)
|
| 96 |
generate_button = gr.Button("Generate Content")
|
| 97 |
|
| 98 |
+
# Output Panel
|
| 99 |
with gr.Column():
|
| 100 |
+
gr.Markdown("### π Output")
|
| 101 |
+
output = gr.Textbox(
|
| 102 |
+
label="Generated Output",
|
| 103 |
+
lines=15,
|
| 104 |
interactive=False
|
| 105 |
)
|
| 106 |
+
download_button = gr.File(label="Download File (if applicable)")
|
| 107 |
|
| 108 |
+
# Link the generation function to the button
|
| 109 |
generate_button.click(
|
| 110 |
+
fn=generate_content,
|
| 111 |
+
inputs=[selected_topic, subtopic, complexity, input_text, examples_count, output_type],
|
| 112 |
+
outputs=[output, download_button]
|
| 113 |
+
)
|
| 114 |
+
|
| 115 |
+
# Feedback Mechanism
|
| 116 |
+
feedback_label = gr.Label(value="Was this content helpful?")
|
| 117 |
+
feedback_rating = gr.Radio(
|
| 118 |
+
choices=["Yes", "No"],
|
| 119 |
+
label="Feedback",
|
| 120 |
+
value="Yes"
|
| 121 |
)
|
| 122 |
+
feedback_button = gr.Button("Submit Feedback")
|
| 123 |
|
| 124 |
+
def collect_feedback(feedback):
|
| 125 |
+
return f"Thank you for your feedback: {feedback}"
|
|
|
|
|
|
|
|
|
|
| 126 |
|
| 127 |
+
feedback_button.click(
|
| 128 |
+
fn=collect_feedback,
|
| 129 |
+
inputs=[feedback_rating],
|
| 130 |
+
outputs=[feedback_label]
|
| 131 |
)
|
| 132 |
|
| 133 |
# Launch the Gradio app
|