Update app.py
Browse files
app.py
CHANGED
|
@@ -1,66 +1,87 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
from huggingface_hub import InferenceClient
|
| 3 |
|
| 4 |
-
# Initialize Hugging Face Inference Client
|
| 5 |
client = InferenceClient()
|
| 6 |
|
| 7 |
-
# Function to
|
| 8 |
-
def
|
| 9 |
"""
|
| 10 |
-
Generates dynamic
|
| 11 |
-
"""
|
| 12 |
-
prompt = f"Create a short lesson or problem for the topic: {selected_path}."
|
| 13 |
-
response = client.text_generation(
|
| 14 |
-
model="gpt2", # Replace with a more suitable Hugging Face model for educational tasks
|
| 15 |
-
inputs=prompt,
|
| 16 |
-
max_new_tokens=150,
|
| 17 |
-
temperature=0.7
|
| 18 |
-
)
|
| 19 |
-
return response["generated_text"]
|
| 20 |
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
|
|
|
|
|
|
| 25 |
"""
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
temperature=0.5
|
| 32 |
)
|
| 33 |
-
|
| 34 |
|
| 35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
with gr.Blocks() as app:
|
| 37 |
-
|
| 38 |
-
gr.Markdown("
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
'<div style="width: 25%; background-color: green; height: 100%;"></div></div>')
|
| 43 |
-
|
| 44 |
-
# Options for learning paths
|
| 45 |
-
selected_topic = gr.Radio(
|
| 46 |
-
choices=["Math", "Science & Engineering", "Computer Science & Programming", "Data Science & Data Analysis"],
|
| 47 |
-
label="Select a Learning Path",
|
| 48 |
-
value="Math"
|
| 49 |
)
|
| 50 |
-
|
| 51 |
-
# Buttons for user interaction
|
| 52 |
with gr.Row():
|
| 53 |
-
|
| 54 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 60 |
|
| 61 |
-
# Link
|
| 62 |
-
generate_button.click(
|
| 63 |
-
|
|
|
|
|
|
|
|
|
|
| 64 |
|
| 65 |
-
# Launch the app
|
| 66 |
app.launch()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
from huggingface_hub import InferenceClient
|
| 3 |
|
| 4 |
+
# Initialize the Hugging Face Inference Client
|
| 5 |
client = InferenceClient()
|
| 6 |
|
| 7 |
+
# Function to stream content for Math, STEM, and Code Generation
|
| 8 |
+
def generate_stream(selected_topic, input_text):
|
| 9 |
"""
|
| 10 |
+
Generates dynamic lessons, solutions, or code snippets based on the selected topic.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
|
| 12 |
+
Args:
|
| 13 |
+
selected_topic (str): The selected subject (e.g., Math, STEM, or Code Generation).
|
| 14 |
+
input_text (str): Additional input for contextual content generation.
|
| 15 |
+
|
| 16 |
+
Yields:
|
| 17 |
+
str: Incremental output content.
|
| 18 |
"""
|
| 19 |
+
# Create a topic-specific prompt
|
| 20 |
+
prompt = (
|
| 21 |
+
f"Generate a {selected_topic.lower()} lesson, problem, or example based on the following input: {input_text}"
|
| 22 |
+
if input_text.strip() else
|
| 23 |
+
f"Generate a beginner-level {selected_topic.lower()} lesson with examples."
|
|
|
|
| 24 |
)
|
| 25 |
+
messages = [{"role": "user", "content": prompt}]
|
| 26 |
|
| 27 |
+
try:
|
| 28 |
+
# Create a stream for generating content
|
| 29 |
+
stream = client.chat.completions.create(
|
| 30 |
+
model="Qwen/Qwen2.5-Coder-32B-Instruct", # Streaming model
|
| 31 |
+
messages=messages,
|
| 32 |
+
temperature=0.5,
|
| 33 |
+
max_tokens=1024,
|
| 34 |
+
top_p=0.7,
|
| 35 |
+
stream=True
|
| 36 |
+
)
|
| 37 |
+
|
| 38 |
+
# Stream the generated content incrementally
|
| 39 |
+
generated_content = ""
|
| 40 |
+
for chunk in stream:
|
| 41 |
+
generated_content += chunk.choices[0].delta.content
|
| 42 |
+
yield generated_content # Yield content incrementally
|
| 43 |
+
except Exception as e:
|
| 44 |
+
yield f"Error: {e}" # Display error if any issues occur
|
| 45 |
+
|
| 46 |
+
# Create the Gradio interface
|
| 47 |
with gr.Blocks() as app:
|
| 48 |
+
# App Title and Instructions
|
| 49 |
+
gr.Markdown("## 🎓 STEM Learning and Code Generator")
|
| 50 |
+
gr.Markdown(
|
| 51 |
+
"Get dynamic lessons, problem-solving examples, or code snippets for Math, STEM, "
|
| 52 |
+
"or Computer Science. Select a topic and get started!"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 53 |
)
|
| 54 |
+
|
|
|
|
| 55 |
with gr.Row():
|
| 56 |
+
# Input Section
|
| 57 |
+
with gr.Column():
|
| 58 |
+
selected_topic = gr.Radio(
|
| 59 |
+
choices=["Math", "STEM", "Computer Science (Code Generation)"],
|
| 60 |
+
label="Select a Topic",
|
| 61 |
+
value="Math" # Default selection
|
| 62 |
+
)
|
| 63 |
+
input_text = gr.Textbox(
|
| 64 |
+
lines=2,
|
| 65 |
+
label="Optional Input",
|
| 66 |
+
placeholder="Provide additional context (e.g., 'Explain calculus basics' or 'Generate Python code for sorting')."
|
| 67 |
+
)
|
| 68 |
+
generate_button = gr.Button("Generate Content")
|
| 69 |
|
| 70 |
+
# Output Section
|
| 71 |
+
with gr.Column():
|
| 72 |
+
gr.Markdown("### Generated Content")
|
| 73 |
+
output_stream = gr.Textbox(
|
| 74 |
+
lines=15,
|
| 75 |
+
label="Output",
|
| 76 |
+
interactive=False
|
| 77 |
+
)
|
| 78 |
|
| 79 |
+
# Link the generate button to the streaming function
|
| 80 |
+
generate_button.click(
|
| 81 |
+
fn=generate_stream,
|
| 82 |
+
inputs=[selected_topic, input_text],
|
| 83 |
+
outputs=output_stream
|
| 84 |
+
)
|
| 85 |
|
| 86 |
+
# Launch the Gradio app
|
| 87 |
app.launch()
|