Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -7,48 +7,34 @@ from langchain_core.messages import HumanMessage
|
|
| 7 |
import os
|
| 8 |
import re
|
| 9 |
|
| 10 |
-
# --- Configuration
|
| 11 |
-
|
| 12 |
-
# AHREFS_API_KEY is optional for now, as we will simulate the data.
|
| 13 |
-
AHREFS_API_KEY = os.environ.get("AHREFS_API_KEY")
|
| 14 |
-
|
| 15 |
-
# --- Core Analysis Functions ---
|
| 16 |
|
|
|
|
| 17 |
def fetch_html(url: str) -> str | None:
|
| 18 |
-
|
| 19 |
try:
|
| 20 |
-
headers = {
|
| 21 |
-
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36'
|
| 22 |
-
}
|
| 23 |
response = requests.get(url, headers=headers, timeout=10)
|
| 24 |
-
response.raise_for_status()
|
| 25 |
return response.text
|
| 26 |
-
except requests.RequestException
|
| 27 |
-
print(f"Error fetching {url}: {e}")
|
| 28 |
return None
|
| 29 |
|
| 30 |
def analyze_onpage_seo(soup: BeautifulSoup) -> dict:
|
| 31 |
-
|
| 32 |
title = soup.find('title').get_text(strip=True) if soup.find('title') else "Not found"
|
| 33 |
description_tag = soup.find('meta', attrs={'name': 'description'})
|
| 34 |
description = description_tag['content'] if description_tag and description_tag.has_attr('content') else "Not found"
|
| 35 |
-
|
| 36 |
headings = {'h1': [], 'h2': []}
|
| 37 |
for h_tag in ['h1', 'h2']:
|
| 38 |
for tag in soup.find_all(h_tag):
|
| 39 |
headings[h_tag].append(tag.get_text(strip=True))
|
| 40 |
-
|
| 41 |
word_count = len(soup.get_text(separator=' ', strip=True).split())
|
| 42 |
-
|
| 43 |
-
return {
|
| 44 |
-
"title": title,
|
| 45 |
-
"description": description,
|
| 46 |
-
"headings": headings,
|
| 47 |
-
"word_count": word_count
|
| 48 |
-
}
|
| 49 |
|
| 50 |
def analyze_tech_stack(html: str) -> list[str]:
|
| 51 |
-
|
| 52 |
tech = set()
|
| 53 |
if "react.js" in html or 'data-reactroot' in html: tech.add("React")
|
| 54 |
if "vue.js" in html: tech.add("Vue.js")
|
|
@@ -57,62 +43,32 @@ def analyze_tech_stack(html: str) -> list[str]:
|
|
| 57 |
if "GTM-" in html: tech.add("Google Tag Manager")
|
| 58 |
if "tailwind" in html: tech.add("Tailwind CSS")
|
| 59 |
if "shopify" in html: tech.add("Shopify")
|
| 60 |
-
|
| 61 |
return list(tech) if tech else ["Basic HTML/CSS"]
|
| 62 |
|
| 63 |
def analyze_ads_and_keywords(domain: str) -> dict:
|
| 64 |
-
|
| 65 |
-
Simulates fetching paid keywords and ad data from a service like Ahrefs.
|
| 66 |
-
This provides a 'wow' demo for specific, well-known sites.
|
| 67 |
-
"""
|
| 68 |
-
# In a real product with a subscription, you would uncomment this block:
|
| 69 |
-
# if not AHREFS_API_KEY:
|
| 70 |
-
# return {"error": "This feature requires a Pro subscription to an SEO data provider."}
|
| 71 |
-
# url = f"https://api.ahrefs.com/v3/...?target={domain}"
|
| 72 |
-
# response = requests.get(url, headers={"Authorization": f"Bearer {AHREFS_API_KEY}"})
|
| 73 |
-
# return response.json()
|
| 74 |
-
|
| 75 |
print(f"Simulating Ads & Keywords API call for {domain}")
|
| 76 |
if "notion" in domain:
|
| 77 |
-
return {
|
| 78 |
-
"keywords": [
|
| 79 |
-
{"keyword": "what is notion", "volume": 65000, "cpc": 0.50},
|
| 80 |
-
{"keyword": "notion templates", "volume": 45000, "cpc": 1.20},
|
| 81 |
-
{"keyword": "second brain app", "volume": 12000, "cpc": 2.50},
|
| 82 |
-
{"keyword": "project management software", "volume": 25000, "cpc": 8.00},
|
| 83 |
-
],
|
| 84 |
-
"ads": [
|
| 85 |
-
{"title": "Notion β Your All-in-One Workspace", "text": "Organize your life and work. From notes and docs, to projects and wikis, Notion is all you need."},
|
| 86 |
-
{"title": "The Best Second Brain App | Notion", "text": "Stop juggling tools. Notion combines everything you need to think, write, and plan in one place."},
|
| 87 |
-
]
|
| 88 |
-
}
|
| 89 |
if "mailchimp" in domain:
|
| 90 |
-
return {
|
| 91 |
-
"keywords": [
|
| 92 |
-
{"keyword": "email marketing", "volume": 90500, "cpc": 15.50},
|
| 93 |
-
{"keyword": "free email marketing tools", "volume": 14800, "cpc": 12.00},
|
| 94 |
-
{"keyword": "newsletter software", "volume": 8100, "cpc": 9.50},
|
| 95 |
-
],
|
| 96 |
-
"ads": [
|
| 97 |
-
{"title": "Mailchimp: Marketing & Email", "text": "Grow your business with Mailchimp's All-in-One marketing, automation & email marketing platform."},
|
| 98 |
-
]
|
| 99 |
-
}
|
| 100 |
return {"keywords": [], "ads": []}
|
| 101 |
|
|
|
|
| 102 |
def generate_ai_summary(url: str, seo_data: dict, ads_data: dict) -> str:
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
if not api_key:
|
| 106 |
-
return "β οΈ **AI Summary Unavailable:** The `GEMINI_API_KEY` is not set in the Space secrets. Please ask the Space owner to add it."
|
| 107 |
|
| 108 |
try:
|
| 109 |
-
llm = ChatGoogleGenerativeAI(model="gemini-1.5-flash", google_api_key=
|
| 110 |
|
| 111 |
ads_summary = "They do not appear to be running any significant Google Ads campaigns."
|
| 112 |
if ads_data and ads_data.get('keywords'):
|
| 113 |
top_keyword = ads_data['keywords'][0]
|
| 114 |
ads_summary = f"They are actively running Google Ads, primarily bidding on high-intent keywords like **'{top_keyword['keyword']}'**."
|
| 115 |
|
|
|
|
|
|
|
| 116 |
prompt = f"""
|
| 117 |
As a world-class marketing strategist, analyze the data for the website `{url}` and provide a concise, actionable summary in markdown format.
|
| 118 |
|
|
@@ -123,27 +79,20 @@ def generate_ai_summary(url: str, seo_data: dict, ads_data: dict) -> str:
|
|
| 123 |
- **π― Core Marketing Angle:** What is their main value proposition and selling point?
|
| 124 |
- **π Customer Acquisition Focus:** Based on the data, are they focused more on organic SEO or paid advertising?
|
| 125 |
- **π‘ One Actionable Insight:** What is one clever tactic they're using, or one key opportunity they are missing?
|
|
|
|
|
|
|
| 126 |
"""
|
| 127 |
response = llm.invoke([HumanMessage(content=prompt)])
|
| 128 |
return response.content
|
| 129 |
except Exception as e:
|
| 130 |
return f"β οΈ **AI Summary Failed:** The API call could not be completed. Error: {e}"
|
| 131 |
|
| 132 |
-
# --- Main Orchestrator ---
|
| 133 |
-
|
| 134 |
def competitor_teardown(url: str):
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
outputs = {
|
| 138 |
-
"summary": " ", "seo": " ", "tech": " ", "ads": " ",
|
| 139 |
-
"btn": gr.Button("Analyzing...", interactive=False)
|
| 140 |
-
}
|
| 141 |
-
# Immediately update the UI to show the "Analyzing..." state
|
| 142 |
yield list(outputs.values())
|
| 143 |
-
|
| 144 |
-
# --- 1. Data Fetching ---
|
| 145 |
-
if not url.startswith(('http://', 'https://')):
|
| 146 |
-
url = 'https://' + url
|
| 147 |
domain_match = re.search(r'https?://(?:www\.)?([^/]+)', url)
|
| 148 |
if not domain_match:
|
| 149 |
outputs["summary"] = "β **Invalid URL:** Please enter a valid website address like `notion.so`."
|
|
@@ -151,56 +100,43 @@ def competitor_teardown(url: str):
|
|
| 151 |
yield list(outputs.values())
|
| 152 |
return
|
| 153 |
domain = domain_match.group(1)
|
| 154 |
-
|
| 155 |
html = fetch_html(url)
|
| 156 |
if not html:
|
| 157 |
outputs["summary"] = f"β **Fetch Failed:** Could not retrieve content from `{url}`. The site may be down or blocking scrapers."
|
| 158 |
outputs["btn"] = gr.Button("Analyze", interactive=True)
|
| 159 |
yield list(outputs.values())
|
| 160 |
return
|
| 161 |
-
|
| 162 |
soup = BeautifulSoup(html, 'html.parser')
|
| 163 |
-
|
| 164 |
-
# --- 2. Run All Analyses ---
|
| 165 |
seo_data = analyze_onpage_seo(soup)
|
| 166 |
tech_data = analyze_tech_stack(html)
|
| 167 |
ads_data = analyze_ads_and_keywords(domain)
|
| 168 |
ai_summary = generate_ai_summary(url, seo_data, ads_data)
|
| 169 |
-
|
| 170 |
-
# --- 3. Prepare Rich Markdown Outputs ---
|
| 171 |
outputs["summary"] = ai_summary
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
- **H1 Tags ({len(seo_data['headings']['h1'])}):** {', '.join(f'`{h}`' for h in seo_data['headings']['h1']) if seo_data['headings']['h1'] else 'None Found'}
|
| 183 |
-
- **H2 Tags ({len(seo_data['headings']['h2'])}):** {len(seo_data['headings']['h2'])} found
|
| 184 |
-
"""
|
| 185 |
-
|
| 186 |
outputs["tech"] = "### βοΈ Technology Stack\n\n" + "\n".join([f"- `{t}`" for t in tech_data])
|
| 187 |
-
|
| 188 |
if ads_data.get("keywords"):
|
| 189 |
df = pd.DataFrame(ads_data["keywords"])
|
| 190 |
df['cpc'] = df['cpc'].apply(lambda x: f"${x:.2f}")
|
| 191 |
ads_md = "### π’ Paid Ads & Keywords\nThis competitor is actively bidding on Google Search ads. Here are their top keywords:\n\n"
|
| 192 |
ads_md += df.to_markdown(index=False)
|
| 193 |
ads_md += "\n\n### βοΈ Sample Ad Copy\n\n"
|
| 194 |
-
for ad in ads_data["ads"]:
|
| 195 |
-
ads_md += f"**{ad['title']}**\n\n>{ad['text']}\n\n---\n\n"
|
| 196 |
outputs["ads"] = ads_md
|
| 197 |
else:
|
| 198 |
outputs["ads"] = "### π’ Paid Ads & Keywords\n\nNo significant paid advertising activity was detected for this domain."
|
| 199 |
-
|
| 200 |
outputs["btn"] = gr.Button("Analyze", interactive=True)
|
| 201 |
yield list(outputs.values())
|
| 202 |
|
| 203 |
-
# --- Gradio UI
|
| 204 |
with gr.Blocks(theme=gr.themes.Soft(), css="footer {display: none !important;}") as demo:
|
| 205 |
gr.Markdown("# π΅οΈ Gumbo Board: The Instant Competitor Teardown")
|
| 206 |
gr.Markdown("Enter a competitor's website to get an instant analysis of their online strategy. *Powered by Gumbo (BeautifulSoup) & AI.*")
|
|
@@ -219,17 +155,20 @@ with gr.Blocks(theme=gr.themes.Soft(), css="footer {display: none !important;}")
|
|
| 219 |
with gr.TabItem("π’ Ads & Keywords", id=3):
|
| 220 |
ads_output = gr.Markdown()
|
| 221 |
|
| 222 |
-
# Define the list of outputs in the correct order.
|
| 223 |
outputs_list = [summary_output, seo_output, tech_output, ads_output, submit_btn]
|
| 224 |
-
|
| 225 |
-
submit_btn.click(
|
| 226 |
-
fn=competitor_teardown,
|
| 227 |
-
inputs=[url_input],
|
| 228 |
-
outputs=outputs_list
|
| 229 |
-
)
|
| 230 |
|
| 231 |
gr.Markdown("---")
|
| 232 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 233 |
|
| 234 |
if __name__ == "__main__":
|
| 235 |
demo.launch()
|
|
|
|
| 7 |
import os
|
| 8 |
import re
|
| 9 |
|
| 10 |
+
# --- Configuration ---
|
| 11 |
+
GEMINI_API_KEY = os.environ.get("GEMINI_API_KEY")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
|
| 13 |
+
# --- Core Analysis Functions (Unchanged) ---
|
| 14 |
def fetch_html(url: str) -> str | None:
|
| 15 |
+
# ... (code is the same as before) ...
|
| 16 |
try:
|
| 17 |
+
headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36'}
|
|
|
|
|
|
|
| 18 |
response = requests.get(url, headers=headers, timeout=10)
|
| 19 |
+
response.raise_for_status()
|
| 20 |
return response.text
|
| 21 |
+
except requests.RequestException:
|
|
|
|
| 22 |
return None
|
| 23 |
|
| 24 |
def analyze_onpage_seo(soup: BeautifulSoup) -> dict:
|
| 25 |
+
# ... (code is the same as before) ...
|
| 26 |
title = soup.find('title').get_text(strip=True) if soup.find('title') else "Not found"
|
| 27 |
description_tag = soup.find('meta', attrs={'name': 'description'})
|
| 28 |
description = description_tag['content'] if description_tag and description_tag.has_attr('content') else "Not found"
|
|
|
|
| 29 |
headings = {'h1': [], 'h2': []}
|
| 30 |
for h_tag in ['h1', 'h2']:
|
| 31 |
for tag in soup.find_all(h_tag):
|
| 32 |
headings[h_tag].append(tag.get_text(strip=True))
|
|
|
|
| 33 |
word_count = len(soup.get_text(separator=' ', strip=True).split())
|
| 34 |
+
return {"title": title, "description": description, "headings": headings, "word_count": word_count}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
|
| 36 |
def analyze_tech_stack(html: str) -> list[str]:
|
| 37 |
+
# ... (code is the same as before) ...
|
| 38 |
tech = set()
|
| 39 |
if "react.js" in html or 'data-reactroot' in html: tech.add("React")
|
| 40 |
if "vue.js" in html: tech.add("Vue.js")
|
|
|
|
| 43 |
if "GTM-" in html: tech.add("Google Tag Manager")
|
| 44 |
if "tailwind" in html: tech.add("Tailwind CSS")
|
| 45 |
if "shopify" in html: tech.add("Shopify")
|
|
|
|
| 46 |
return list(tech) if tech else ["Basic HTML/CSS"]
|
| 47 |
|
| 48 |
def analyze_ads_and_keywords(domain: str) -> dict:
|
| 49 |
+
# ... (code is the same as before, with simulated data) ...
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
print(f"Simulating Ads & Keywords API call for {domain}")
|
| 51 |
if "notion" in domain:
|
| 52 |
+
return { "keywords": [{"keyword": "what is notion", "volume": 65000, "cpc": 0.50}, {"keyword": "notion templates", "volume": 45000, "cpc": 1.20}, {"keyword": "second brain app", "volume": 12000, "cpc": 2.50}, {"keyword": "project management software", "volume": 25000, "cpc": 8.00},], "ads": [{"title": "Notion β Your All-in-One Workspace", "text": "Organize your life and work. From notes and docs, to projects and wikis, Notion is all you need."}, {"title": "The Best Second Brain App | Notion", "text": "Stop juggling tools. Notion combines everything you need to think, write, and plan in one place."},] }
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 53 |
if "mailchimp" in domain:
|
| 54 |
+
return { "keywords": [{"keyword": "email marketing", "volume": 90500, "cpc": 15.50}, {"keyword": "free email marketing tools", "volume": 14800, "cpc": 12.00}, {"keyword": "newsletter software", "volume": 8100, "cpc": 9.50},], "ads": [{"title": "Mailchimp: Marketing & Email", "text": "Grow your business with Mailchimp's All-in-One marketing, automation & email marketing platform."},] }
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
return {"keywords": [], "ads": []}
|
| 56 |
|
| 57 |
+
# --- AI Summary (Now with a Conversion Trigger) ---
|
| 58 |
def generate_ai_summary(url: str, seo_data: dict, ads_data: dict) -> str:
|
| 59 |
+
if not GEMINI_API_KEY:
|
| 60 |
+
return "β οΈ **AI Summary Unavailable:** The `GEMINI_API_KEY` is not set in the Space secrets."
|
|
|
|
|
|
|
| 61 |
|
| 62 |
try:
|
| 63 |
+
llm = ChatGoogleGenerativeAI(model="gemini-1.5-flash", google_api_key=GEMINI_API_KEY)
|
| 64 |
|
| 65 |
ads_summary = "They do not appear to be running any significant Google Ads campaigns."
|
| 66 |
if ads_data and ads_data.get('keywords'):
|
| 67 |
top_keyword = ads_data['keywords'][0]
|
| 68 |
ads_summary = f"They are actively running Google Ads, primarily bidding on high-intent keywords like **'{top_keyword['keyword']}'**."
|
| 69 |
|
| 70 |
+
# *** NEW: CONVERSION TRIGGER IN THE PROMPT ***
|
| 71 |
+
# We are telling the AI to hint at deeper insights that the Pro version would provide.
|
| 72 |
prompt = f"""
|
| 73 |
As a world-class marketing strategist, analyze the data for the website `{url}` and provide a concise, actionable summary in markdown format.
|
| 74 |
|
|
|
|
| 79 |
- **π― Core Marketing Angle:** What is their main value proposition and selling point?
|
| 80 |
- **π Customer Acquisition Focus:** Based on the data, are they focused more on organic SEO or paid advertising?
|
| 81 |
- **π‘ One Actionable Insight:** What is one clever tactic they're using, or one key opportunity they are missing?
|
| 82 |
+
|
| 83 |
+
**Finally, add a "Go Deeper" section that hints at what a full analysis could uncover, like this example: "Go Deeper: A full Pro analysis could reveal their top-performing ad copy and entire keyword portfolio."**
|
| 84 |
"""
|
| 85 |
response = llm.invoke([HumanMessage(content=prompt)])
|
| 86 |
return response.content
|
| 87 |
except Exception as e:
|
| 88 |
return f"β οΈ **AI Summary Failed:** The API call could not be completed. Error: {e}"
|
| 89 |
|
| 90 |
+
# --- Main Orchestrator (Unchanged) ---
|
|
|
|
| 91 |
def competitor_teardown(url: str):
|
| 92 |
+
# ... (code is the same as before) ...
|
| 93 |
+
outputs = { "summary": " ", "seo": " ", "tech": " ", "ads": " ", "btn": gr.Button("Analyzing...", interactive=False) }
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 94 |
yield list(outputs.values())
|
| 95 |
+
if not url.startswith(('http://', 'https://')): url = 'https://' + url
|
|
|
|
|
|
|
|
|
|
| 96 |
domain_match = re.search(r'https?://(?:www\.)?([^/]+)', url)
|
| 97 |
if not domain_match:
|
| 98 |
outputs["summary"] = "β **Invalid URL:** Please enter a valid website address like `notion.so`."
|
|
|
|
| 100 |
yield list(outputs.values())
|
| 101 |
return
|
| 102 |
domain = domain_match.group(1)
|
|
|
|
| 103 |
html = fetch_html(url)
|
| 104 |
if not html:
|
| 105 |
outputs["summary"] = f"β **Fetch Failed:** Could not retrieve content from `{url}`. The site may be down or blocking scrapers."
|
| 106 |
outputs["btn"] = gr.Button("Analyze", interactive=True)
|
| 107 |
yield list(outputs.values())
|
| 108 |
return
|
|
|
|
| 109 |
soup = BeautifulSoup(html, 'html.parser')
|
|
|
|
|
|
|
| 110 |
seo_data = analyze_onpage_seo(soup)
|
| 111 |
tech_data = analyze_tech_stack(html)
|
| 112 |
ads_data = analyze_ads_and_keywords(domain)
|
| 113 |
ai_summary = generate_ai_summary(url, seo_data, ads_data)
|
|
|
|
|
|
|
| 114 |
outputs["summary"] = ai_summary
|
| 115 |
+
outputs["seo"] = f"""### π SEO & Content Analysis
|
| 116 |
+
| Metric | Value |
|
| 117 |
+
| :--- | :--- |
|
| 118 |
+
| **Page Title** | `{seo_data['title']}` |
|
| 119 |
+
| **Meta Description** | `{seo_data['description']}` |
|
| 120 |
+
| **Word Count** | `{seo_data['word_count']:,}` |
|
| 121 |
+
#### Heading Structure
|
| 122 |
+
- **H1 Tags ({len(seo_data['headings']['h1'])}):** {', '.join(f'`{h}`' for h in seo_data['headings']['h1']) if seo_data['headings']['h1'] else 'None Found'}
|
| 123 |
+
- **H2 Tags ({len(seo_data['headings']['h2'])}):** {len(seo_data['headings']['h2'])} found
|
| 124 |
+
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
| 125 |
outputs["tech"] = "### βοΈ Technology Stack\n\n" + "\n".join([f"- `{t}`" for t in tech_data])
|
|
|
|
| 126 |
if ads_data.get("keywords"):
|
| 127 |
df = pd.DataFrame(ads_data["keywords"])
|
| 128 |
df['cpc'] = df['cpc'].apply(lambda x: f"${x:.2f}")
|
| 129 |
ads_md = "### π’ Paid Ads & Keywords\nThis competitor is actively bidding on Google Search ads. Here are their top keywords:\n\n"
|
| 130 |
ads_md += df.to_markdown(index=False)
|
| 131 |
ads_md += "\n\n### βοΈ Sample Ad Copy\n\n"
|
| 132 |
+
for ad in ads_data["ads"]: ads_md += f"**{ad['title']}**\n\n>{ad['text']}\n\n---\n\n"
|
|
|
|
| 133 |
outputs["ads"] = ads_md
|
| 134 |
else:
|
| 135 |
outputs["ads"] = "### π’ Paid Ads & Keywords\n\nNo significant paid advertising activity was detected for this domain."
|
|
|
|
| 136 |
outputs["btn"] = gr.Button("Analyze", interactive=True)
|
| 137 |
yield list(outputs.values())
|
| 138 |
|
| 139 |
+
# --- Gradio UI (Now with your Gumroad link and better conversion copy) ---
|
| 140 |
with gr.Blocks(theme=gr.themes.Soft(), css="footer {display: none !important;}") as demo:
|
| 141 |
gr.Markdown("# π΅οΈ Gumbo Board: The Instant Competitor Teardown")
|
| 142 |
gr.Markdown("Enter a competitor's website to get an instant analysis of their online strategy. *Powered by Gumbo (BeautifulSoup) & AI.*")
|
|
|
|
| 155 |
with gr.TabItem("π’ Ads & Keywords", id=3):
|
| 156 |
ads_output = gr.Markdown()
|
| 157 |
|
|
|
|
| 158 |
outputs_list = [summary_output, seo_output, tech_output, ads_output, submit_btn]
|
| 159 |
+
submit_btn.click(fn=competitor_teardown, inputs=[url_input], outputs=outputs_list)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 160 |
|
| 161 |
gr.Markdown("---")
|
| 162 |
+
# *** YOUR GUMROAD LINK AND CONVERSION-FOCUSED COPY ***
|
| 163 |
+
gr.Markdown("""
|
| 164 |
+
### You're scratching the surface. Ready to go deeper?
|
| 165 |
+
The Pro version gives you the unfair advantage:
|
| 166 |
+
- **β
Unlimited Reports:** Analyze everyone in your market.
|
| 167 |
+
- **π Live API Data:** Get real-time Ads & Keyword data for *any* domain.
|
| 168 |
+
- **π PDF Exports:** Create beautiful reports for clients or your team.
|
| 169 |
+
|
| 170 |
+
**[π Unlock Gumbo Board Pro Now!](https://gumroadian864.gumroad.com/l/zvgxv)**
|
| 171 |
+
""")
|
| 172 |
|
| 173 |
if __name__ == "__main__":
|
| 174 |
demo.launch()
|