|  | """ | 
					
						
						|  | app.py | 
					
						
						|  |  | 
					
						
						|  | Main application file for AnyCoder, a Gradio-based AI code generation tool. | 
					
						
						|  |  | 
					
						
						|  | This application provides a user interface for generating code in various languages | 
					
						
						|  | using different AI models. It supports inputs from text prompts, files, images, | 
					
						
						|  | and websites, and includes features like web search enhancement and live code previews. | 
					
						
						|  |  | 
					
						
						|  | Structure: | 
					
						
						|  | - Imports & Configuration: Loads necessary libraries and constants. | 
					
						
						|  | - Helper Functions: Small utility functions supporting the UI logic. | 
					
						
						|  | - Core Application Logic: The main `generation_code` function that handles the AI interaction. | 
					
						
						|  | - UI Layout: Defines the Gradio interface using `gr.Blocks`. | 
					
						
						|  | - Event Wiring: Connects UI components to backend functions. | 
					
						
						|  | - Application Entry Point: Launches the Gradio app. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | import gradio as gr | 
					
						
						|  | from typing import Optional, Dict, List, Tuple, Any | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | from constants import SYSTEM_PROMPTS, AVAILABLE_MODELS, DEMO_LIST | 
					
						
						|  | from hf_client import get_inference_client | 
					
						
						|  | from tavily_search import enhance_query_with_search | 
					
						
						|  | from utils import ( | 
					
						
						|  | extract_text_from_file, | 
					
						
						|  | extract_website_content, | 
					
						
						|  | apply_search_replace_changes, | 
					
						
						|  | history_to_messages, | 
					
						
						|  | history_to_chatbot_messages, | 
					
						
						|  | remove_code_block, | 
					
						
						|  | parse_transformers_js_output, | 
					
						
						|  | format_transformers_js_output | 
					
						
						|  | ) | 
					
						
						|  | from deploy import send_to_sandbox, load_project_from_url | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | History = List[Tuple[str, str]] | 
					
						
						|  | Model = Dict[str, Any] | 
					
						
						|  | DEFAULT_SYSTEM_PROMPT = """ | 
					
						
						|  | You are a helpful AI coding assistant. Your primary goal is to generate clean, correct, and efficient code based on the user's request. | 
					
						
						|  | - Follow the user's requirements precisely. | 
					
						
						|  | - If the user asks for a specific language, provide the code in that language. | 
					
						
						|  | - Enclose the final code in a single markdown code block (e.g., ```html ... ```). | 
					
						
						|  | - Do not include any conversational text, apologies, or explanations outside of the code block in your final response. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def get_model_details(model_name: str) -> Optional[Model]: | 
					
						
						|  | """Finds the full dictionary for a model given its name.""" | 
					
						
						|  | for model in AVAILABLE_MODELS: | 
					
						
						|  | if model["name"] == model_name: | 
					
						
						|  | return model | 
					
						
						|  | return None | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def generation_code( | 
					
						
						|  | query: Optional[str], | 
					
						
						|  | file: Optional[str], | 
					
						
						|  | website_url: Optional[str], | 
					
						
						|  | current_model: Model, | 
					
						
						|  | enable_search: bool, | 
					
						
						|  | language: str, | 
					
						
						|  | history: Optional[History], | 
					
						
						|  | hf_token: str, | 
					
						
						|  | ) -> Tuple[str, History, str, List[Dict[str, str]]]: | 
					
						
						|  | """ | 
					
						
						|  | The main function to handle a user's code generation request. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | query = query or "" | 
					
						
						|  | history = history or [] | 
					
						
						|  |  | 
					
						
						|  | try: | 
					
						
						|  |  | 
					
						
						|  | system_prompt = SYSTEM_PROMPTS.get(language, DEFAULT_SYSTEM_PROMPT) | 
					
						
						|  | model_id = current_model["id"] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if model_id.startswith("openai/"): | 
					
						
						|  | provider = "openai" | 
					
						
						|  | elif model_id.startswith("gemini/"): | 
					
						
						|  | provider = "gemini" | 
					
						
						|  | elif model_id.startswith("fireworks-ai/"): | 
					
						
						|  | provider = "fireworks-ai" | 
					
						
						|  | else: | 
					
						
						|  |  | 
					
						
						|  | provider = "huggingface" | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | messages = history_to_messages(history, system_prompt) | 
					
						
						|  | context_query = query | 
					
						
						|  |  | 
					
						
						|  | if file: | 
					
						
						|  | text = extract_text_from_file(file) | 
					
						
						|  | context_query += f"\n\n[Attached File Content]\n{text[:5000]}" | 
					
						
						|  |  | 
					
						
						|  | if website_url: | 
					
						
						|  | text = extract_website_content(website_url) | 
					
						
						|  | if not text.startswith('Error'): | 
					
						
						|  | context_query += f"\n\n[Scraped Website Content]\n{text[:8000]}" | 
					
						
						|  |  | 
					
						
						|  | final_query = enhance_query_with_search(context_query, enable_search) | 
					
						
						|  | messages.append({'role': 'user', 'content': final_query}) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | client = get_inference_client(model_id, provider, user_token=hf_token) | 
					
						
						|  | resp = client.chat.completions.create( | 
					
						
						|  | model=model_id, | 
					
						
						|  | messages=messages, | 
					
						
						|  | max_tokens=16384, | 
					
						
						|  | temperature=0.1 | 
					
						
						|  | ) | 
					
						
						|  | content = resp.choices[0].message.content | 
					
						
						|  |  | 
					
						
						|  | except Exception as e: | 
					
						
						|  | error_message = f"β **An error occurred:**\n\n```\n{str(e)}\n```\n\nPlease check your API keys, model selection, or try again." | 
					
						
						|  | history.append((query, error_message)) | 
					
						
						|  | return "", history, "", history_to_chatbot_messages(history) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if language == 'transformers.js': | 
					
						
						|  | files = parse_transformers_js_output(content) | 
					
						
						|  | code_str = format_transformers_js_output(files) | 
					
						
						|  | preview_html = send_to_sandbox(files.get('index.html', '')) | 
					
						
						|  | else: | 
					
						
						|  | clean_code = remove_code_block(content) | 
					
						
						|  |  | 
					
						
						|  | if history and history[-1][1] and not history[-1][1].startswith("β"): | 
					
						
						|  | code_str = apply_search_replace_changes(history[-1][1], clean_code) | 
					
						
						|  | else: | 
					
						
						|  | code_str = clean_code | 
					
						
						|  | preview_html = send_to_sandbox(code_str) if language == 'html' else '' | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | updated_history = history + [(query, code_str)] | 
					
						
						|  | chat_messages = history_to_chatbot_messages(updated_history) | 
					
						
						|  |  | 
					
						
						|  | return code_str, updated_history, preview_html, chat_messages | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | CUSTOM_CSS = """ | 
					
						
						|  | body { font-family: -apple-system, BlinkMacSystemFont, 'Segoe UI', Roboto, 'Helvetica Neue', Arial, sans-serif; } | 
					
						
						|  | #main_title { text-align: center; font-size: 2.5rem; font-weight: 700; color: #1a202c; margin: 1.5rem 0 0.5rem 0; } | 
					
						
						|  | #subtitle { text-align: center; color: #4a5568; margin-bottom: 2.5rem; font-size: 1.1rem; } | 
					
						
						|  | .gradio-container { background-color: #f7fafc; } | 
					
						
						|  | /* Custom styling for the generate button to make it stand out */ | 
					
						
						|  | #gen_btn { box-shadow: 0 4px 6px -1px rgba(0, 0, 0, 0.1), 0 2px 4px -1px rgba(0, 0, 0, 0.06); } | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue", secondary_hue="sky"), title="AnyCoder - AI Code Generator", css=CUSTOM_CSS) as demo: | 
					
						
						|  |  | 
					
						
						|  | history_state = gr.State([]) | 
					
						
						|  | initial_model = AVAILABLE_MODELS[0] | 
					
						
						|  | model_state = gr.State(initial_model) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | gr.Markdown("# π Shasha AI", elem_id="main_title") | 
					
						
						|  | gr.Markdown("Your personal AI partner for generating, modifying, and understanding code.", elem_id="subtitle") | 
					
						
						|  |  | 
					
						
						|  | with gr.Row(equal_height=False): | 
					
						
						|  |  | 
					
						
						|  | with gr.Column(scale=1): | 
					
						
						|  | gr.Markdown("### 1. Select Model") | 
					
						
						|  | model_choices = [model["name"] for model in AVAILABLE_MODELS] | 
					
						
						|  | model_dd = gr.Dropdown( | 
					
						
						|  | choices=model_choices, | 
					
						
						|  | value=initial_model["name"], | 
					
						
						|  | label="AI Model", | 
					
						
						|  | info="Different models have different strengths." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | gr.Markdown("### 2. Provide Context") | 
					
						
						|  | with gr.Tabs(): | 
					
						
						|  | with gr.Tab("π Prompt"): | 
					
						
						|  | prompt_in = gr.Textbox( | 
					
						
						|  | label="Your Request", | 
					
						
						|  | lines=7, | 
					
						
						|  | placeholder="e.g., 'Create a modern, responsive landing page for a SaaS product.'", | 
					
						
						|  | show_label=False | 
					
						
						|  | ) | 
					
						
						|  | with gr.Tab("π File"): | 
					
						
						|  | file_in = gr.File(label="Attach File (Optional)", type="filepath") | 
					
						
						|  | with gr.Tab("π Website"): | 
					
						
						|  | url_site = gr.Textbox(label="Scrape Website (Optional)", placeholder="https://example.com") | 
					
						
						|  |  | 
					
						
						|  | gr.Markdown("### 3. Configure Output") | 
					
						
						|  | language_dd = gr.Dropdown( | 
					
						
						|  | choices=["html", "python", "transformers.js", "sql", "javascript", "css"], | 
					
						
						|  | value="html", | 
					
						
						|  | label="Target Language" | 
					
						
						|  | ) | 
					
						
						|  | search_chk = gr.Checkbox(label="Enable Web Search", info="Enhances AI with real-time info.") | 
					
						
						|  |  | 
					
						
						|  | with gr.Row(): | 
					
						
						|  | clr_btn = gr.Button("Clear Session", variant="secondary") | 
					
						
						|  | gen_btn = gr.Button("Generate Code", variant="primary", elem_id="gen_btn") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | with gr.Column(scale=2): | 
					
						
						|  | with gr.Tabs() as main_tabs: | 
					
						
						|  | with gr.Tab("π» Code", id="code_tab"): | 
					
						
						|  | code_out = gr.Code(label="Generated Code", language="html", interactive=True) | 
					
						
						|  | with gr.Tab("ποΈ Live Preview", id="preview_tab"): | 
					
						
						|  | preview_out = gr.HTML(label="Live Preview") | 
					
						
						|  | with gr.Tab("π History", id="history_tab"): | 
					
						
						|  | chat_out = gr.Chatbot(label="Conversation History", type="messages") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def on_model_change(model_name: str) -> Dict: | 
					
						
						|  | """Updates the model_state when the user selects a new model.""" | 
					
						
						|  | model_details = get_model_details(model_name) | 
					
						
						|  | return model_details or initial_model | 
					
						
						|  |  | 
					
						
						|  | model_dd.change(fn=on_model_change, inputs=[model_dd], outputs=[model_state]) | 
					
						
						|  | language_dd.change(fn=lambda lang: gr.update(language=lang), inputs=[language_dd], outputs=[code_out]) | 
					
						
						|  |  | 
					
						
						|  | gen_btn.click( | 
					
						
						|  | fn=generation_code, | 
					
						
						|  | inputs=[ | 
					
						
						|  | prompt_in, file_in, url_site, | 
					
						
						|  | model_state, search_chk, language_dd, history_state | 
					
						
						|  | ], | 
					
						
						|  | outputs=[code_out, history_state, preview_out, chat_out] | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def clear_session(): | 
					
						
						|  | """Resets all UI components and state to their initial values.""" | 
					
						
						|  | return ( | 
					
						
						|  | "", | 
					
						
						|  | None, | 
					
						
						|  | "", | 
					
						
						|  | [], | 
					
						
						|  | "", | 
					
						
						|  | "", | 
					
						
						|  | [] | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | clr_btn.click( | 
					
						
						|  | fn=clear_session, | 
					
						
						|  | outputs=[prompt_in, file_in, url_site, history_state, code_out, preview_out, chat_out], | 
					
						
						|  | queue=False | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if __name__ == '__main__': | 
					
						
						|  | demo.queue().launch() |