Update hf_client.py
Browse files- hf_client.py +35 -10
hf_client.py
CHANGED
|
@@ -1,29 +1,54 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
# hf_client.py
|
| 4 |
-
|
| 5 |
import os
|
| 6 |
-
|
|
|
|
| 7 |
from tavily import TavilyClient
|
| 8 |
|
| 9 |
-
#
|
|
|
|
| 10 |
HF_TOKEN = os.getenv('HF_TOKEN')
|
|
|
|
|
|
|
| 11 |
if not HF_TOKEN:
|
| 12 |
raise RuntimeError(
|
| 13 |
"HF_TOKEN environment variable is not set. Please set it to your Hugging Face API token."
|
| 14 |
)
|
| 15 |
|
| 16 |
-
|
| 17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
if model_id == "moonshotai/Kimi-K2-Instruct":
|
| 19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
return InferenceClient(
|
|
|
|
| 21 |
provider=provider,
|
| 22 |
api_key=HF_TOKEN,
|
| 23 |
bill_to="huggingface"
|
| 24 |
)
|
| 25 |
|
| 26 |
-
# Tavily
|
|
|
|
| 27 |
TAVILY_API_KEY = os.getenv('TAVILY_API_KEY')
|
| 28 |
tavily_client = None
|
| 29 |
if TAVILY_API_KEY:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import os
|
| 2 |
+
import openai
|
| 3 |
+
from huggingface_hub import InferenceClient
|
| 4 |
from tavily import TavilyClient
|
| 5 |
|
| 6 |
+
# === Environment Setup ===
|
| 7 |
+
|
| 8 |
HF_TOKEN = os.getenv('HF_TOKEN')
|
| 9 |
+
GROQ_API_KEY = os.getenv("GROQ_API_KEY")
|
| 10 |
+
|
| 11 |
if not HF_TOKEN:
|
| 12 |
raise RuntimeError(
|
| 13 |
"HF_TOKEN environment variable is not set. Please set it to your Hugging Face API token."
|
| 14 |
)
|
| 15 |
|
| 16 |
+
# === Dynamic Inference Client ===
|
| 17 |
+
|
| 18 |
+
def get_inference_client(model_id: str, provider: str = "auto"):
|
| 19 |
+
"""
|
| 20 |
+
Return an inference client depending on model ID.
|
| 21 |
+
Uses Groq's native API for specific models, otherwise HuggingFace InferenceClient.
|
| 22 |
+
"""
|
| 23 |
if model_id == "moonshotai/Kimi-K2-Instruct":
|
| 24 |
+
if not GROQ_API_KEY:
|
| 25 |
+
raise RuntimeError("GROQ_API_KEY is required for Groq models.")
|
| 26 |
+
|
| 27 |
+
# Configure OpenAI client for Groq
|
| 28 |
+
openai.api_key = GROQ_API_KEY
|
| 29 |
+
openai.api_base = "https://api.groq.com/openai/v1"
|
| 30 |
+
|
| 31 |
+
def chat(messages, temperature=0.7, max_tokens=1024):
|
| 32 |
+
response = openai.ChatCompletion.create(
|
| 33 |
+
model="mixtral-8x7b-32768", # You can map the model here
|
| 34 |
+
messages=messages,
|
| 35 |
+
temperature=temperature,
|
| 36 |
+
max_tokens=max_tokens
|
| 37 |
+
)
|
| 38 |
+
return response["choices"][0]["message"]["content"]
|
| 39 |
+
|
| 40 |
+
return chat # Return callable interface
|
| 41 |
+
|
| 42 |
+
# Fallback to Hugging Face
|
| 43 |
return InferenceClient(
|
| 44 |
+
model=model_id,
|
| 45 |
provider=provider,
|
| 46 |
api_key=HF_TOKEN,
|
| 47 |
bill_to="huggingface"
|
| 48 |
)
|
| 49 |
|
| 50 |
+
# === Tavily Client ===
|
| 51 |
+
|
| 52 |
TAVILY_API_KEY = os.getenv('TAVILY_API_KEY')
|
| 53 |
tavily_client = None
|
| 54 |
if TAVILY_API_KEY:
|