Spaces:
Sleeping
Sleeping
| # MCP-Powered Culinary Voice Assistant | |
| # Hugging Face Space Implementation | |
| import gradio as gr | |
| import numpy as np | |
| from mcp.server.fastmcp import FastMCP | |
| from agents import Agent, trace | |
| from agents.mcp import MCPServerSse, MCPServerStdio | |
| from agents.voice import VoicePipeline, TTSModelSettings, AudioInput | |
| import sqlite3 | |
| import json | |
| import requests | |
| from PIL import Image | |
| import io | |
| # ------ Custom MCP Cooking Tools Server ------ | |
| mcp = FastMCP("Culinary Tools Server") | |
| def get_recipe_by_ingredients(ingredients: list) -> dict: | |
| """Find recipes based on available ingredients""" | |
| print(f"[Culinary Server] Finding recipes with: {', '.join(ingredients)}") | |
| # In a real implementation, this would call a recipe API | |
| return { | |
| "recipes": [ | |
| {"name": "Vegetable Stir Fry", "time": 20, "difficulty": "Easy"}, | |
| {"name": "Pasta Primavera", "time": 30, "difficulty": "Medium"} | |
| ] | |
| } | |
| def get_recipe_image(recipe_name: str) -> str: | |
| """Generate an image of the finished recipe""" | |
| print(f"[Culinary Server] Generating image for: {recipe_name}") | |
| # This would call DALL-E or Stable Diffusion in production | |
| return "https://example.com/recipe-image.jpg" | |
| def convert_measurements(amount: float, from_unit: str, to_unit: str) -> dict: | |
| """Convert cooking measurements between units""" | |
| print(f"[Culinary Server] Converting {amount} {from_unit} to {to_unit}") | |
| # Simple conversion logic - real implementation would handle more units | |
| conversions = { | |
| ("tbsp", "tsp"): lambda x: x * 3, | |
| ("cups", "ml"): lambda x: x * 240, | |
| ("oz", "g"): lambda x: x * 28.35 | |
| } | |
| conversion_key = (from_unit.lower(), to_unit.lower()) | |
| if conversion_key in conversions: | |
| return {"result": conversions[conversion_key](amount), "unit": to_unit} | |
| return {"error": "Conversion not supported"} | |
| # ------ Recipe Database (SQLite) ------ | |
| def init_recipe_db(): | |
| conn = sqlite3.connect('file:recipes.db?mode=memory&cache=shared', uri=True) | |
| c = conn.cursor() | |
| c.execute('''CREATE TABLE IF NOT EXISTS recipes | |
| (id INTEGER PRIMARY KEY, name TEXT, ingredients TEXT, instructions TEXT, prep_time INT)''') | |
| # Sample recipes | |
| recipes = [ | |
| ("Classic Pancakes", "['flour', 'eggs', 'milk', 'baking powder']", | |
| "1. Mix dry ingredients\n2. Add wet ingredients\n3. Cook on griddle", 15), | |
| ("Tomato Soup", "['tomatoes', 'onion', 'garlic', 'vegetable stock']", | |
| "1. Sauté onions\n2. Add tomatoes\n3. Simmer and blend", 30) | |
| ] | |
| c.executemany("INSERT INTO recipes (name, ingredients, instructions, prep_time) VALUES (?,?,?,?)", recipes) | |
| conn.commit() | |
| return conn | |
| # ------ Voice Assistant Setup ------ | |
| def create_culinary_agent(mcp_servers): | |
| """Create the culinary assistant agent""" | |
| culinary_agent = Agent( | |
| name="ChefAssistant", | |
| instructions=""" | |
| You are a professional chef assistant. Help users with cooking tasks: | |
| 1. Use get_recipe_by_ingredients when users have specific ingredients | |
| 2. Use get_recipe_details for known recipes | |
| 3. Use convert_measurements for unit conversions | |
| 4. Use get_recipe_image when the user asks to see a dish | |
| 5. Keep responses concise and practical for kitchen use | |
| 6. Use a warm, encouraging tone suitable for cooking | |
| """, | |
| mcp_servers=mcp_servers, | |
| model="gpt-4.1-mini", | |
| ) | |
| return culinary_agent | |
| # ------ Gradio Interface ------ | |
| def process_voice_command(audio, state): | |
| """Process voice command through the agent system""" | |
| sr, audio_data = audio | |
| audio_array = (audio_data / np.iinfo(audio_data.dtype).max).astype(np.float32) | |
| # Initialize on first run | |
| if state is None: | |
| init_recipe_db() | |
| state = { | |
| "mcp_servers": [], | |
| "agent": None, | |
| "voice_pipeline": VoicePipeline( | |
| workflow=None, | |
| config=VoicePipelineConfig( | |
| tts_settings=TTSModelSettings( | |
| instructions="Warm, encouraging chef voice" | |
| ) | |
| ) | |
| ) | |
| } | |
| # Start MCP servers | |
| with MCPServerSse( | |
| name="Culinary Tools", | |
| params={"url": "http://localhost:8000/sse"}, | |
| client_session_timeout_seconds=15, | |
| ) as culinary_server: | |
| with MCPServerStdio( | |
| params={"command": "uvx", "args": ["mcp-server-sqlite", "--db-path", "file:recipes.db?mode=memory&cache=shared"]}, | |
| ) as db_server: | |
| state["mcp_servers"] = [culinary_server, db_server] | |
| state["agent"] = create_culinary_agent(state["mcp_servers"]) | |
| # Process audio through agent | |
| audio_input = AudioInput(buffer=audio_array, sample_rate=sr) | |
| response = state["voice_pipeline"].run(state["agent"], audio_input) | |
| # For demo purposes, return mock response | |
| return ( | |
| "https://example.com/response.wav", | |
| "I found 3 recipes for your ingredients! Vegetable Stir Fry (20 mins) and Pasta Primavera (30 mins).", | |
| "https://example.com/stir-fry.jpg", | |
| state | |
| ) | |
| # ------ Hugging Face Space UI ------ | |
| with gr.Blocks(title="MCP Culinary Voice Assistant") as demo: | |
| state = gr.State(value=None) | |
| with gr.Row(): | |
| gr.Markdown("# 🧑🍳 MCP-Powered Culinary Voice Assistant") | |
| with gr.Row(): | |
| audio_input = gr.Audio(source="microphone", type="numpy", label="Speak to Chef Assistant") | |
| audio_output = gr.Audio(label="Assistant Response", interactive=False) | |
| with gr.Row(): | |
| text_output = gr.Textbox(label="Transcription", interactive=False) | |
| image_output = gr.Image(label="Recipe Image", interactive=False) | |
| with gr.Row(): | |
| submit_btn = gr.Button("Process Command", variant="primary") | |
| submit_btn.click( | |
| fn=process_voice_command, | |
| inputs=[audio_input, state], | |
| outputs=[audio_output, text_output, image_output, state] | |
| ) | |
| gr.Examples( | |
| examples=[ | |
| ["What can I make with eggs and flour?", "", ""], | |
| ["Show me how tomato soup looks", "", ""], | |
| ["Convert 2 cups to milliliters", "", ""] | |
| ], | |
| inputs=[text_output], | |
| label="Example Queries" | |
| ) | |
| if __name__ == "__main__": | |
| # Start MCP server in background thread | |
| import threading | |
| server_thread = threading.Thread(target=mcp.run, kwargs={"transport": "sse"}) | |
| server_thread.daemon = True | |
| server_thread.start() | |
| # Launch Gradio interface | |
| demo.launch(server_name="0.0.0.0", server_port=7860) |