Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,26 +1,38 @@
|
|
| 1 |
-
# MCP-Powered
|
| 2 |
# Hugging Face Space Implementation
|
| 3 |
|
| 4 |
import gradio as gr
|
| 5 |
import numpy as np
|
| 6 |
-
from mcp.server.fastmcp import FastMCP
|
| 7 |
-
from agents import Agent, trace
|
| 8 |
-
from agents.mcp import MCPServerSse, MCPServerStdio
|
| 9 |
-
from agents.voice import VoicePipeline, TTSModelSettings, AudioInput
|
| 10 |
import sqlite3
|
| 11 |
import json
|
| 12 |
import requests
|
| 13 |
from PIL import Image
|
| 14 |
import io
|
|
|
|
| 15 |
|
| 16 |
-
# ------
|
| 17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
|
| 19 |
-
|
| 20 |
-
|
|
|
|
|
|
|
|
|
|
| 21 |
"""Find recipes based on available ingredients"""
|
| 22 |
-
|
| 23 |
-
# In a real implementation, this would call a recipe API
|
| 24 |
return {
|
| 25 |
"recipes": [
|
| 26 |
{"name": "Vegetable Stir Fry", "time": 20, "difficulty": "Easy"},
|
|
@@ -28,18 +40,16 @@ def get_recipe_by_ingredients(ingredients: list) -> dict:
|
|
| 28 |
]
|
| 29 |
}
|
| 30 |
|
| 31 |
-
|
| 32 |
-
def get_recipe_image(recipe_name: str) -> str:
|
| 33 |
"""Generate an image of the finished recipe"""
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
|
|
|
|
|
|
| 37 |
|
| 38 |
-
|
| 39 |
-
def convert_measurements(amount: float, from_unit: str, to_unit: str) -> dict:
|
| 40 |
"""Convert cooking measurements between units"""
|
| 41 |
-
print(f"[Culinary Server] Converting {amount} {from_unit} to {to_unit}")
|
| 42 |
-
# Simple conversion logic - real implementation would handle more units
|
| 43 |
conversions = {
|
| 44 |
("tbsp", "tsp"): lambda x: x * 3,
|
| 45 |
("cups", "ml"): lambda x: x * 240,
|
|
@@ -50,18 +60,17 @@ def convert_measurements(amount: float, from_unit: str, to_unit: str) -> dict:
|
|
| 50 |
return {"result": conversions[conversion_key](amount), "unit": to_unit}
|
| 51 |
return {"error": "Conversion not supported"}
|
| 52 |
|
| 53 |
-
# ------ Recipe Database
|
| 54 |
def init_recipe_db():
|
| 55 |
-
conn = sqlite3.connect('
|
| 56 |
c = conn.cursor()
|
| 57 |
-
c.execute('''CREATE TABLE
|
| 58 |
(id INTEGER PRIMARY KEY, name TEXT, ingredients TEXT, instructions TEXT, prep_time INT)''')
|
| 59 |
|
| 60 |
-
# Sample recipes
|
| 61 |
recipes = [
|
| 62 |
-
("Classic Pancakes", "
|
| 63 |
"1. Mix dry ingredients\n2. Add wet ingredients\n3. Cook on griddle", 15),
|
| 64 |
-
("Tomato Soup", "
|
| 65 |
"1. Sauté onions\n2. Add tomatoes\n3. Simmer and blend", 30)
|
| 66 |
]
|
| 67 |
|
|
@@ -69,77 +78,106 @@ def init_recipe_db():
|
|
| 69 |
conn.commit()
|
| 70 |
return conn
|
| 71 |
|
| 72 |
-
# ------ Voice
|
| 73 |
-
def
|
| 74 |
-
"""
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
)
|
| 89 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 90 |
|
| 91 |
# ------ Gradio Interface ------
|
| 92 |
-
def process_voice_command(audio
|
| 93 |
"""Process voice command through the agent system"""
|
| 94 |
-
|
| 95 |
-
|
| 96 |
|
| 97 |
-
#
|
| 98 |
-
|
| 99 |
-
init_recipe_db()
|
| 100 |
-
state = {
|
| 101 |
-
"mcp_servers": [],
|
| 102 |
-
"agent": None,
|
| 103 |
-
"voice_pipeline": VoicePipeline(
|
| 104 |
-
workflow=None,
|
| 105 |
-
config=VoicePipelineConfig(
|
| 106 |
-
tts_settings=TTSModelSettings(
|
| 107 |
-
instructions="Warm, encouraging chef voice"
|
| 108 |
-
)
|
| 109 |
-
)
|
| 110 |
-
)
|
| 111 |
-
}
|
| 112 |
-
|
| 113 |
-
# Start MCP servers
|
| 114 |
-
with MCPServerSse(
|
| 115 |
-
name="Culinary Tools",
|
| 116 |
-
params={"url": "http://localhost:8000/sse"},
|
| 117 |
-
client_session_timeout_seconds=15,
|
| 118 |
-
) as culinary_server:
|
| 119 |
-
with MCPServerStdio(
|
| 120 |
-
params={"command": "uvx", "args": ["mcp-server-sqlite", "--db-path", "file:recipes.db?mode=memory&cache=shared"]},
|
| 121 |
-
) as db_server:
|
| 122 |
-
state["mcp_servers"] = [culinary_server, db_server]
|
| 123 |
-
state["agent"] = create_culinary_agent(state["mcp_servers"])
|
| 124 |
|
| 125 |
-
#
|
| 126 |
-
|
| 127 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 128 |
|
| 129 |
-
#
|
|
|
|
|
|
|
|
|
|
| 130 |
return (
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
state
|
| 135 |
)
|
| 136 |
|
| 137 |
# ------ Hugging Face Space UI ------
|
| 138 |
with gr.Blocks(title="MCP Culinary Voice Assistant") as demo:
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
with gr.Row():
|
| 142 |
-
gr.Markdown("# 🧑🍳 MCP-Powered Culinary Voice Assistant")
|
| 143 |
|
| 144 |
with gr.Row():
|
| 145 |
audio_input = gr.Audio(source="microphone", type="numpy", label="Speak to Chef Assistant")
|
|
@@ -154,26 +192,19 @@ with gr.Blocks(title="MCP Culinary Voice Assistant") as demo:
|
|
| 154 |
|
| 155 |
submit_btn.click(
|
| 156 |
fn=process_voice_command,
|
| 157 |
-
inputs=[audio_input
|
| 158 |
-
outputs=[audio_output, text_output, image_output
|
| 159 |
)
|
| 160 |
|
| 161 |
gr.Examples(
|
| 162 |
examples=[
|
| 163 |
-
["What can I make with eggs and flour?"
|
| 164 |
-
["Show me how tomato soup looks"
|
| 165 |
-
["Convert 2 cups to milliliters"
|
| 166 |
],
|
| 167 |
inputs=[text_output],
|
| 168 |
label="Example Queries"
|
| 169 |
)
|
| 170 |
|
| 171 |
if __name__ == "__main__":
|
| 172 |
-
|
| 173 |
-
import threading
|
| 174 |
-
server_thread = threading.Thread(target=mcp.run, kwargs={"transport": "sse"})
|
| 175 |
-
server_thread.daemon = True
|
| 176 |
-
server_thread.start()
|
| 177 |
-
|
| 178 |
-
# Launch Gradio interface
|
| 179 |
-
demo.launch(server_name="0.0.0.0", server_port=7860)
|
|
|
|
| 1 |
+
# MCP-Powered Voice Assistant with Open-Source Tools
|
| 2 |
# Hugging Face Space Implementation
|
| 3 |
|
| 4 |
import gradio as gr
|
| 5 |
import numpy as np
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
import sqlite3
|
| 7 |
import json
|
| 8 |
import requests
|
| 9 |
from PIL import Image
|
| 10 |
import io
|
| 11 |
+
import time
|
| 12 |
|
| 13 |
+
# ------ Mock MCP Server Implementation ------
|
| 14 |
+
class MockMCPServer:
|
| 15 |
+
def __init__(self):
|
| 16 |
+
self.tools = {}
|
| 17 |
+
|
| 18 |
+
def register_tool(self, name, func, description):
|
| 19 |
+
self.tools[name] = {
|
| 20 |
+
"function": func,
|
| 21 |
+
"description": description
|
| 22 |
+
}
|
| 23 |
+
|
| 24 |
+
def call_tool(self, tool_name, params):
|
| 25 |
+
if tool_name in self.tools:
|
| 26 |
+
return self.tools[tool_name]["function"](**params)
|
| 27 |
+
return {"error": f"Tool {tool_name} not found"}
|
| 28 |
|
| 29 |
+
# ------ Create Mock MCP Server ------
|
| 30 |
+
mcp_server = MockMCPServer()
|
| 31 |
+
|
| 32 |
+
# ------ Tool Implementations ------
|
| 33 |
+
def get_recipe_by_ingredients(ingredients):
|
| 34 |
"""Find recipes based on available ingredients"""
|
| 35 |
+
# In a real implementation, this would call an API
|
|
|
|
| 36 |
return {
|
| 37 |
"recipes": [
|
| 38 |
{"name": "Vegetable Stir Fry", "time": 20, "difficulty": "Easy"},
|
|
|
|
| 40 |
]
|
| 41 |
}
|
| 42 |
|
| 43 |
+
def get_recipe_image(recipe_name):
|
|
|
|
| 44 |
"""Generate an image of the finished recipe"""
|
| 45 |
+
# In production, this would call a model like Stable Diffusion
|
| 46 |
+
return {
|
| 47 |
+
"image_url": "https://example.com/recipe-image.jpg",
|
| 48 |
+
"alt_text": f"Image of {recipe_name}"
|
| 49 |
+
}
|
| 50 |
|
| 51 |
+
def convert_measurements(amount, from_unit, to_unit):
|
|
|
|
| 52 |
"""Convert cooking measurements between units"""
|
|
|
|
|
|
|
| 53 |
conversions = {
|
| 54 |
("tbsp", "tsp"): lambda x: x * 3,
|
| 55 |
("cups", "ml"): lambda x: x * 240,
|
|
|
|
| 60 |
return {"result": conversions[conversion_key](amount), "unit": to_unit}
|
| 61 |
return {"error": "Conversion not supported"}
|
| 62 |
|
| 63 |
+
# ------ Recipe Database ------
|
| 64 |
def init_recipe_db():
|
| 65 |
+
conn = sqlite3.connect(':memory:')
|
| 66 |
c = conn.cursor()
|
| 67 |
+
c.execute('''CREATE TABLE recipes
|
| 68 |
(id INTEGER PRIMARY KEY, name TEXT, ingredients TEXT, instructions TEXT, prep_time INT)''')
|
| 69 |
|
|
|
|
| 70 |
recipes = [
|
| 71 |
+
("Classic Pancakes", json.dumps(["flour", "eggs", "milk", "baking powder"]),
|
| 72 |
"1. Mix dry ingredients\n2. Add wet ingredients\n3. Cook on griddle", 15),
|
| 73 |
+
("Tomato Soup", json.dumps(["tomatoes", "onion", "garlic", "vegetable stock"]),
|
| 74 |
"1. Sauté onions\n2. Add tomatoes\n3. Simmer and blend", 30)
|
| 75 |
]
|
| 76 |
|
|
|
|
| 78 |
conn.commit()
|
| 79 |
return conn
|
| 80 |
|
| 81 |
+
# ------ Voice Processing Functions ------
|
| 82 |
+
def text_to_speech(text):
|
| 83 |
+
"""Mock TTS function - in real use, replace with actual TTS"""
|
| 84 |
+
print(f"[TTS]: {text}")
|
| 85 |
+
# Return dummy audio data
|
| 86 |
+
return np.zeros(16000, dtype=np.float32), 16000
|
| 87 |
+
|
| 88 |
+
def speech_to_text(audio):
|
| 89 |
+
"""Mock STT function - in real use, replace with actual STT"""
|
| 90 |
+
# Return dummy text
|
| 91 |
+
return "Show me pancake recipes"
|
| 92 |
+
|
| 93 |
+
# ------ Agent Logic ------
|
| 94 |
+
def process_query(query, db_conn):
|
| 95 |
+
"""Process user query using the available tools"""
|
| 96 |
+
# Simple intent recognition
|
| 97 |
+
if "recipe" in query.lower() or "make" in query.lower():
|
| 98 |
+
# Extract ingredients
|
| 99 |
+
ingredients = ["flour", "eggs"] # Simplified extraction
|
| 100 |
+
return mcp_server.call_tool(
|
| 101 |
+
"get_recipe_by_ingredients",
|
| 102 |
+
{"ingredients": ingredients}
|
| 103 |
+
)
|
| 104 |
+
elif "image" in query.lower() or "show" in query.lower():
|
| 105 |
+
recipe_name = "Classic Pancakes" # Simplified extraction
|
| 106 |
+
return mcp_server.call_tool(
|
| 107 |
+
"get_recipe_image",
|
| 108 |
+
{"recipe_name": recipe_name}
|
| 109 |
+
)
|
| 110 |
+
elif "convert" in query.lower():
|
| 111 |
+
# Simplified extraction
|
| 112 |
+
return mcp_server.call_tool(
|
| 113 |
+
"convert_measurements",
|
| 114 |
+
{"amount": 2, "from_unit": "cups", "to_unit": "ml"}
|
| 115 |
+
)
|
| 116 |
+
else:
|
| 117 |
+
# Fallback to database search
|
| 118 |
+
c = db_conn.cursor()
|
| 119 |
+
c.execute("SELECT * FROM recipes WHERE name LIKE ?", (f"%{query}%",))
|
| 120 |
+
return c.fetchall()
|
| 121 |
+
|
| 122 |
+
# ------ Register Tools with MCP Server ------
|
| 123 |
+
mcp_server.register_tool(
|
| 124 |
+
"get_recipe_by_ingredients",
|
| 125 |
+
get_recipe_by_ingredients,
|
| 126 |
+
"Find recipes based on available ingredients"
|
| 127 |
+
)
|
| 128 |
+
mcp_server.register_tool(
|
| 129 |
+
"get_recipe_image",
|
| 130 |
+
get_recipe_image,
|
| 131 |
+
"Generate an image of the finished recipe"
|
| 132 |
+
)
|
| 133 |
+
mcp_server.register_tool(
|
| 134 |
+
"convert_measurements",
|
| 135 |
+
convert_measurements,
|
| 136 |
+
"Convert cooking measurements between units"
|
| 137 |
+
)
|
| 138 |
+
|
| 139 |
+
# ------ Initialize System ------
|
| 140 |
+
db_conn = init_recipe_db()
|
| 141 |
|
| 142 |
# ------ Gradio Interface ------
|
| 143 |
+
def process_voice_command(audio):
|
| 144 |
"""Process voice command through the agent system"""
|
| 145 |
+
# Convert audio to text
|
| 146 |
+
query = speech_to_text(audio)
|
| 147 |
|
| 148 |
+
# Process query using agent logic
|
| 149 |
+
result = process_query(query, db_conn)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 150 |
|
| 151 |
+
# Generate response text
|
| 152 |
+
if isinstance(result, list) and result:
|
| 153 |
+
response_text = f"Found {len(result)} recipes:\n"
|
| 154 |
+
for item in result:
|
| 155 |
+
response_text += f"- {item[1]} ({item[4]} mins)\n"
|
| 156 |
+
elif "recipes" in result:
|
| 157 |
+
response_text = f"Found {len(result['recipes'])} recipes:\n"
|
| 158 |
+
for recipe in result["recipes"]:
|
| 159 |
+
response_text += f"- {recipe['name']} ({recipe['time']} mins)\n"
|
| 160 |
+
elif "image_url" in result:
|
| 161 |
+
response_text = f"Here's an image of {result.get('alt_text', 'the recipe')}"
|
| 162 |
+
image = Image.new('RGB', (300, 200), color=(73, 109, 137))
|
| 163 |
+
else:
|
| 164 |
+
response_text = str(result)
|
| 165 |
+
image = None
|
| 166 |
|
| 167 |
+
# Convert response to audio
|
| 168 |
+
audio_data, sr = text_to_speech(response_text)
|
| 169 |
+
|
| 170 |
+
# Return results
|
| 171 |
return (
|
| 172 |
+
(sr, audio_data),
|
| 173 |
+
response_text,
|
| 174 |
+
image if 'image' in locals() else None
|
|
|
|
| 175 |
)
|
| 176 |
|
| 177 |
# ------ Hugging Face Space UI ------
|
| 178 |
with gr.Blocks(title="MCP Culinary Voice Assistant") as demo:
|
| 179 |
+
gr.Markdown("# 🧑🍳 MCP-Powered Culinary Voice Assistant (Open-Source)")
|
| 180 |
+
gr.Markdown("Speak to your cooking assistant about recipes, conversions, and more!")
|
|
|
|
|
|
|
| 181 |
|
| 182 |
with gr.Row():
|
| 183 |
audio_input = gr.Audio(source="microphone", type="numpy", label="Speak to Chef Assistant")
|
|
|
|
| 192 |
|
| 193 |
submit_btn.click(
|
| 194 |
fn=process_voice_command,
|
| 195 |
+
inputs=[audio_input],
|
| 196 |
+
outputs=[audio_output, text_output, image_output]
|
| 197 |
)
|
| 198 |
|
| 199 |
gr.Examples(
|
| 200 |
examples=[
|
| 201 |
+
["What can I make with eggs and flour?"],
|
| 202 |
+
["Show me how tomato soup looks"],
|
| 203 |
+
["Convert 2 cups to milliliters"]
|
| 204 |
],
|
| 205 |
inputs=[text_output],
|
| 206 |
label="Example Queries"
|
| 207 |
)
|
| 208 |
|
| 209 |
if __name__ == "__main__":
|
| 210 |
+
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|