Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -2,33 +2,11 @@ import gradio as gr
|
|
| 2 |
import numpy as np
|
| 3 |
import sqlite3
|
| 4 |
import json
|
| 5 |
-
import time
|
| 6 |
from PIL import Image, ImageDraw
|
| 7 |
|
| 8 |
-
# ------ Mock MCP Server Implementation ------
|
| 9 |
-
class MockMCPServer:
|
| 10 |
-
def __init__(self):
|
| 11 |
-
self.tools = {}
|
| 12 |
-
|
| 13 |
-
def register_tool(self, name, func, description):
|
| 14 |
-
self.tools[name] = {
|
| 15 |
-
"function": func,
|
| 16 |
-
"description": description
|
| 17 |
-
}
|
| 18 |
-
|
| 19 |
-
def call_tool(self, tool_name, params):
|
| 20 |
-
if tool_name in self.tools:
|
| 21 |
-
return self.tools[tool_name]["function"](**params)
|
| 22 |
-
return {"error": f"Tool {tool_name} not found"}
|
| 23 |
-
|
| 24 |
-
# ------ Create Mock MCP Server ------
|
| 25 |
-
mcp_server = MockMCPServer()
|
| 26 |
-
|
| 27 |
# ------ Tool Implementations ------
|
| 28 |
def get_recipe_by_ingredients(ingredients):
|
| 29 |
"""Find recipes based on available ingredients"""
|
| 30 |
-
# In a real implementation, this would call an API
|
| 31 |
-
print(f"Searching recipes with ingredients: {ingredients}")
|
| 32 |
return {
|
| 33 |
"recipes": [
|
| 34 |
{"name": "Vegetable Stir Fry", "time": 20, "difficulty": "Easy"},
|
|
@@ -38,8 +16,7 @@ def get_recipe_by_ingredients(ingredients):
|
|
| 38 |
|
| 39 |
def get_recipe_image(recipe_name):
|
| 40 |
"""Generate an image of the finished recipe"""
|
| 41 |
-
|
| 42 |
-
# Create a placeholder image with the recipe name
|
| 43 |
img = Image.new('RGB', (300, 200), color=(73, 109, 137))
|
| 44 |
d = ImageDraw.Draw(img)
|
| 45 |
d.text((10,10), f"Image of: {recipe_name}", fill=(255,255,0))
|
|
@@ -47,7 +24,6 @@ def get_recipe_image(recipe_name):
|
|
| 47 |
|
| 48 |
def convert_measurements(amount, from_unit, to_unit):
|
| 49 |
"""Convert cooking measurements between units"""
|
| 50 |
-
print(f"Converting {amount} {from_unit} to {to_unit}")
|
| 51 |
conversions = {
|
| 52 |
("tbsp", "tsp"): lambda x: x * 3,
|
| 53 |
("cups", "ml"): lambda x: x * 240,
|
|
@@ -79,55 +55,27 @@ def init_recipe_db():
|
|
| 79 |
conn.commit()
|
| 80 |
return conn
|
| 81 |
|
| 82 |
-
# ------ Voice Processing Functions ------
|
| 83 |
-
def text_to_speech(text):
|
| 84 |
-
"""Mock TTS function - in real use, replace with actual TTS"""
|
| 85 |
-
print(f"[TTS]: {text}")
|
| 86 |
-
# Return dummy audio data (silence)
|
| 87 |
-
duration = 2 # seconds
|
| 88 |
-
sample_rate = 44100
|
| 89 |
-
samples = np.zeros(int(duration * sample_rate), dtype=np.float32)
|
| 90 |
-
return (sample_rate, samples)
|
| 91 |
-
|
| 92 |
-
def speech_to_text(audio):
|
| 93 |
-
"""Mock STT function - in real use, replace with actual STT"""
|
| 94 |
-
# For now, we return a fixed string. In reality, we would process the audio
|
| 95 |
-
sample_rate, audio_data = audio
|
| 96 |
-
print(f"Received audio with sample rate {sample_rate} and shape {audio_data.shape}")
|
| 97 |
-
# Return a fixed response for demo
|
| 98 |
-
return "What can I make with eggs and flour?"
|
| 99 |
-
|
| 100 |
# ------ Agent Logic ------
|
| 101 |
def process_query(query, db_conn):
|
| 102 |
-
"""Process user query
|
| 103 |
print(f"Processing query: {query}")
|
|
|
|
| 104 |
# Simple intent recognition
|
| 105 |
if "recipe" in query.lower() or "make" in query.lower() or "cook" in query.lower():
|
| 106 |
-
|
| 107 |
-
ingredients
|
| 108 |
-
|
| 109 |
-
if word in query.lower():
|
| 110 |
-
ingredients.append(word)
|
| 111 |
-
if not ingredients:
|
| 112 |
-
ingredients = ["eggs", "flour"] # default
|
| 113 |
return {
|
| 114 |
"type": "recipes",
|
| 115 |
-
"data":
|
| 116 |
}
|
| 117 |
-
elif "image" in query.lower() or "show" in query.lower()
|
| 118 |
-
|
| 119 |
-
recipe_name = "Classic Pancakes" # default
|
| 120 |
-
for recipe in ["pancakes", "stir fry", "tomato soup", "chocolate cake"]:
|
| 121 |
-
if recipe in query.lower():
|
| 122 |
-
recipe_name = recipe
|
| 123 |
-
break
|
| 124 |
return {
|
| 125 |
"type": "image",
|
| 126 |
-
"data":
|
| 127 |
}
|
| 128 |
elif "convert" in query.lower():
|
| 129 |
-
# Extract amount and units - very simple
|
| 130 |
-
# Assume pattern: convert <number> <unit> to <unit>
|
| 131 |
words = query.split()
|
| 132 |
try:
|
| 133 |
amount = float(words[words.index("convert")+1])
|
|
@@ -139,48 +87,32 @@ def process_query(query, db_conn):
|
|
| 139 |
to_unit = "ml"
|
| 140 |
return {
|
| 141 |
"type": "conversion",
|
| 142 |
-
"data":
|
| 143 |
}
|
| 144 |
else:
|
| 145 |
-
# Fallback to database search
|
| 146 |
c = db_conn.cursor()
|
| 147 |
c.execute("SELECT * FROM recipes WHERE name LIKE ?", (f"%{query}%",))
|
| 148 |
-
recipes = c.fetchall()
|
| 149 |
return {
|
| 150 |
"type": "db_recipes",
|
| 151 |
-
"data":
|
| 152 |
}
|
| 153 |
|
| 154 |
-
# ------ Register Tools with MCP Server ------
|
| 155 |
-
mcp_server.register_tool(
|
| 156 |
-
"get_recipe_by_ingredients",
|
| 157 |
-
get_recipe_by_ingredients,
|
| 158 |
-
"Find recipes based on available ingredients"
|
| 159 |
-
)
|
| 160 |
-
mcp_server.register_tool(
|
| 161 |
-
"get_recipe_image",
|
| 162 |
-
get_recipe_image,
|
| 163 |
-
"Generate an image of the finished recipe"
|
| 164 |
-
)
|
| 165 |
-
mcp_server.register_tool(
|
| 166 |
-
"convert_measurements",
|
| 167 |
-
convert_measurements,
|
| 168 |
-
"Convert cooking measurements between units"
|
| 169 |
-
)
|
| 170 |
-
|
| 171 |
-
# ------ Initialize System ------
|
| 172 |
-
db_conn = init_recipe_db()
|
| 173 |
-
|
| 174 |
# ------ Gradio Interface ------
|
| 175 |
def process_voice_command(audio):
|
| 176 |
-
"""Process voice command
|
| 177 |
-
#
|
| 178 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 179 |
|
| 180 |
-
# Process query
|
| 181 |
-
result = process_query(query, db_conn)
|
| 182 |
|
| 183 |
-
# Generate response
|
| 184 |
response_text = ""
|
| 185 |
image = None
|
| 186 |
|
|
@@ -188,64 +120,39 @@ def process_voice_command(audio):
|
|
| 188 |
recipes = result["data"]["recipes"]
|
| 189 |
response_text = f"Found {len(recipes)} recipes:\n"
|
| 190 |
for recipe in recipes:
|
| 191 |
-
response_text += f"- {recipe['name']} ({recipe['time']} mins
|
| 192 |
elif result["type"] == "image":
|
| 193 |
-
image = result["data"]
|
| 194 |
-
response_text = "Here
|
| 195 |
elif result["type"] == "conversion":
|
| 196 |
conv = result["data"]
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
else:
|
| 200 |
-
response_text = f"{conv['result']} {conv['unit']}"
|
| 201 |
elif result["type"] == "db_recipes":
|
| 202 |
recipes = result["data"]
|
| 203 |
-
if recipes
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
response_text += f"- {recipe[1]} ({recipe[4]} mins)\n"
|
| 207 |
-
else:
|
| 208 |
-
response_text = "No recipes found."
|
| 209 |
-
else:
|
| 210 |
-
response_text = "I'm not sure how to help with that."
|
| 211 |
-
|
| 212 |
-
# Convert response to audio
|
| 213 |
-
sr, audio_data = text_to_speech(response_text)
|
| 214 |
|
| 215 |
-
# Return results
|
| 216 |
-
return
|
| 217 |
|
| 218 |
-
# ------
|
| 219 |
-
with gr.Blocks(title="
|
| 220 |
gr.Markdown("# 🧑🍳 MCP-Powered Culinary Voice Assistant")
|
| 221 |
-
gr.Markdown("Speak to your cooking assistant about recipes, conversions, and more!")
|
| 222 |
|
| 223 |
with gr.Row():
|
|
|
|
| 224 |
with gr.Column():
|
| 225 |
-
|
| 226 |
-
|
| 227 |
-
with gr.Column():
|
| 228 |
-
audio_output = gr.Audio(label="Assistant Response", interactive=False)
|
| 229 |
|
| 230 |
-
|
| 231 |
-
text_output = gr.Textbox(label="Transcription", interactive=False)
|
| 232 |
-
image_output = gr.Image(label="Recipe Image", interactive=False)
|
| 233 |
|
| 234 |
submit_btn.click(
|
| 235 |
fn=process_voice_command,
|
| 236 |
inputs=[audio_input],
|
| 237 |
-
outputs=[
|
| 238 |
-
)
|
| 239 |
-
|
| 240 |
-
gr.Examples(
|
| 241 |
-
examples=[
|
| 242 |
-
["What can I make with eggs and flour?"],
|
| 243 |
-
["Show me how tomato soup looks"],
|
| 244 |
-
["Convert 2 cups to milliliters"],
|
| 245 |
-
["Find chocolate cake recipes"]
|
| 246 |
-
],
|
| 247 |
-
inputs=[text_output],
|
| 248 |
-
label="Example Queries"
|
| 249 |
)
|
| 250 |
|
| 251 |
if __name__ == "__main__":
|
|
|
|
| 2 |
import numpy as np
|
| 3 |
import sqlite3
|
| 4 |
import json
|
|
|
|
| 5 |
from PIL import Image, ImageDraw
|
| 6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
# ------ Tool Implementations ------
|
| 8 |
def get_recipe_by_ingredients(ingredients):
|
| 9 |
"""Find recipes based on available ingredients"""
|
|
|
|
|
|
|
| 10 |
return {
|
| 11 |
"recipes": [
|
| 12 |
{"name": "Vegetable Stir Fry", "time": 20, "difficulty": "Easy"},
|
|
|
|
| 16 |
|
| 17 |
def get_recipe_image(recipe_name):
|
| 18 |
"""Generate an image of the finished recipe"""
|
| 19 |
+
# Create placeholder image
|
|
|
|
| 20 |
img = Image.new('RGB', (300, 200), color=(73, 109, 137))
|
| 21 |
d = ImageDraw.Draw(img)
|
| 22 |
d.text((10,10), f"Image of: {recipe_name}", fill=(255,255,0))
|
|
|
|
| 24 |
|
| 25 |
def convert_measurements(amount, from_unit, to_unit):
|
| 26 |
"""Convert cooking measurements between units"""
|
|
|
|
| 27 |
conversions = {
|
| 28 |
("tbsp", "tsp"): lambda x: x * 3,
|
| 29 |
("cups", "ml"): lambda x: x * 240,
|
|
|
|
| 55 |
conn.commit()
|
| 56 |
return conn
|
| 57 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
# ------ Agent Logic ------
|
| 59 |
def process_query(query, db_conn):
|
| 60 |
+
"""Process user query"""
|
| 61 |
print(f"Processing query: {query}")
|
| 62 |
+
|
| 63 |
# Simple intent recognition
|
| 64 |
if "recipe" in query.lower() or "make" in query.lower() or "cook" in query.lower():
|
| 65 |
+
ingredients = [word for word in ["eggs", "flour", "milk", "tomatoes"] if word in query.lower()]
|
| 66 |
+
if not ingredients:
|
| 67 |
+
ingredients = ["eggs", "flour"]
|
|
|
|
|
|
|
|
|
|
|
|
|
| 68 |
return {
|
| 69 |
"type": "recipes",
|
| 70 |
+
"data": get_recipe_by_ingredients(ingredients)
|
| 71 |
}
|
| 72 |
+
elif "image" in query.lower() or "show" in query.lower():
|
| 73 |
+
recipe_name = next((r for r in ["pancakes", "soup", "cake"] if r in query.lower()), "pancakes")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 74 |
return {
|
| 75 |
"type": "image",
|
| 76 |
+
"data": get_recipe_image(recipe_name)
|
| 77 |
}
|
| 78 |
elif "convert" in query.lower():
|
|
|
|
|
|
|
| 79 |
words = query.split()
|
| 80 |
try:
|
| 81 |
amount = float(words[words.index("convert")+1])
|
|
|
|
| 87 |
to_unit = "ml"
|
| 88 |
return {
|
| 89 |
"type": "conversion",
|
| 90 |
+
"data": convert_measurements(amount, from_unit, to_unit)
|
| 91 |
}
|
| 92 |
else:
|
|
|
|
| 93 |
c = db_conn.cursor()
|
| 94 |
c.execute("SELECT * FROM recipes WHERE name LIKE ?", (f"%{query}%",))
|
|
|
|
| 95 |
return {
|
| 96 |
"type": "db_recipes",
|
| 97 |
+
"data": c.fetchall()
|
| 98 |
}
|
| 99 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 100 |
# ------ Gradio Interface ------
|
| 101 |
def process_voice_command(audio):
|
| 102 |
+
"""Process voice command"""
|
| 103 |
+
# For demo purposes, we'll use text input directly
|
| 104 |
+
# In a real implementation, this would convert audio to text
|
| 105 |
+
sample_rate, audio_data = audio
|
| 106 |
+
query = "What can I make with eggs and flour?" # Fixed for demo
|
| 107 |
+
|
| 108 |
+
# Initialize database on first run
|
| 109 |
+
if not hasattr(process_voice_command, "db_conn"):
|
| 110 |
+
process_voice_command.db_conn = init_recipe_db()
|
| 111 |
|
| 112 |
+
# Process query
|
| 113 |
+
result = process_query(query, process_voice_command.db_conn)
|
| 114 |
|
| 115 |
+
# Generate response
|
| 116 |
response_text = ""
|
| 117 |
image = None
|
| 118 |
|
|
|
|
| 120 |
recipes = result["data"]["recipes"]
|
| 121 |
response_text = f"Found {len(recipes)} recipes:\n"
|
| 122 |
for recipe in recipes:
|
| 123 |
+
response_text += f"- {recipe['name']} ({recipe['time']} mins)\n"
|
| 124 |
elif result["type"] == "image":
|
| 125 |
+
image = result["data"]
|
| 126 |
+
response_text = "Here's an image of the recipe!"
|
| 127 |
elif result["type"] == "conversion":
|
| 128 |
conv = result["data"]
|
| 129 |
+
response_text = f"Result: {conv.get('result', '?')} {conv.get('unit', '')}" + \
|
| 130 |
+
(f"\nError: {conv['error']}" if "error" in conv else "")
|
|
|
|
|
|
|
| 131 |
elif result["type"] == "db_recipes":
|
| 132 |
recipes = result["data"]
|
| 133 |
+
response_text = f"Found {len(recipes)} recipes:\n" if recipes else "No recipes found."
|
| 134 |
+
for recipe in recipes:
|
| 135 |
+
response_text += f"- {recipe[1]} ({recipe[4]} mins)\n"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 136 |
|
| 137 |
+
# Return results (no audio in this simplified version)
|
| 138 |
+
return None, response_text, image
|
| 139 |
|
| 140 |
+
# ------ Create Gradio Interface ------
|
| 141 |
+
with gr.Blocks(title="Culinary Voice Assistant") as demo:
|
| 142 |
gr.Markdown("# 🧑🍳 MCP-Powered Culinary Voice Assistant")
|
|
|
|
| 143 |
|
| 144 |
with gr.Row():
|
| 145 |
+
audio_input = gr.Audio(source="microphone", type="numpy", label="Speak to Chef")
|
| 146 |
with gr.Column():
|
| 147 |
+
text_output = gr.Textbox(label="Assistant Response", interactive=False)
|
| 148 |
+
image_output = gr.Image(label="Recipe Image", interactive=False)
|
|
|
|
|
|
|
| 149 |
|
| 150 |
+
submit_btn = gr.Button("Process Command", variant="primary")
|
|
|
|
|
|
|
| 151 |
|
| 152 |
submit_btn.click(
|
| 153 |
fn=process_voice_command,
|
| 154 |
inputs=[audio_input],
|
| 155 |
+
outputs=[gr.Audio(visible=False), text_output, image_output]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 156 |
)
|
| 157 |
|
| 158 |
if __name__ == "__main__":
|