Update agents/agents.py
Browse files- agents/agents.py +133 -146
agents/agents.py
CHANGED
|
@@ -11,12 +11,11 @@ load_dotenv()
|
|
| 11 |
openai_client = OpenAI(api_key=os.getenv("OPENAI_API_KEY")) if os.getenv("OPENAI_API_KEY") else None
|
| 12 |
ELEVENLABS_API_KEY = os.getenv("ELEVENLABS_API_KEY")
|
| 13 |
|
| 14 |
-
|
| 15 |
class TopicAgent:
|
| 16 |
def generate_outline(self, topic, duration, difficulty):
|
| 17 |
if not openai_client:
|
| 18 |
return self._mock_outline(topic, duration, difficulty)
|
| 19 |
-
|
| 20 |
try:
|
| 21 |
response = openai_client.chat.completions.create(
|
| 22 |
model="gpt-4-turbo",
|
|
@@ -45,9 +44,9 @@ class TopicAgent:
|
|
| 45 |
response_format={"type": "json_object"}
|
| 46 |
)
|
| 47 |
return json.loads(response.choices[0].message.content)
|
| 48 |
-
except Exception:
|
| 49 |
return self._mock_outline(topic, duration, difficulty)
|
| 50 |
-
|
| 51 |
def _mock_outline(self, topic, duration, difficulty):
|
| 52 |
return {
|
| 53 |
"title": f"Mastering {topic} for Business Impact",
|
|
@@ -91,12 +90,11 @@ class TopicAgent:
|
|
| 91 |
]
|
| 92 |
}
|
| 93 |
|
| 94 |
-
|
| 95 |
class ContentAgent:
|
| 96 |
def generate_content(self, outline):
|
| 97 |
if not openai_client:
|
| 98 |
return self._mock_content(outline)
|
| 99 |
-
|
| 100 |
try:
|
| 101 |
response = openai_client.chat.completions.create(
|
| 102 |
model="gpt-4-turbo",
|
|
@@ -128,9 +126,9 @@ class ContentAgent:
|
|
| 128 |
response_format={"type": "json_object"}
|
| 129 |
)
|
| 130 |
return json.loads(response.choices[0].message.content)
|
| 131 |
-
except Exception:
|
| 132 |
return self._mock_content(outline)
|
| 133 |
-
|
| 134 |
def _mock_content(self, outline):
|
| 135 |
return {
|
| 136 |
"workshop_title": outline.get("title", "Premium AI Workshop"),
|
|
@@ -172,12 +170,11 @@ class ContentAgent:
|
|
| 172 |
]
|
| 173 |
}
|
| 174 |
|
| 175 |
-
|
| 176 |
class SlideAgent:
|
| 177 |
def generate_slides(self, content):
|
| 178 |
if not openai_client:
|
| 179 |
return self._professional_slides(content)
|
| 180 |
-
|
| 181 |
try:
|
| 182 |
response = openai_client.chat.completions.create(
|
| 183 |
model="gpt-4-turbo",
|
|
@@ -204,9 +201,9 @@ class SlideAgent:
|
|
| 204 |
max_tokens=2500
|
| 205 |
)
|
| 206 |
return response.choices[0].message.content
|
| 207 |
-
except Exception:
|
| 208 |
return self._professional_slides(content)
|
| 209 |
-
|
| 210 |
def _professional_slides(self, content):
|
| 211 |
return f"""---
|
| 212 |
marp: true
|
|
@@ -259,156 +256,146 @@ Let's discuss your specific challenges
|
|
| 259 |
"""
|
| 260 |
|
| 261 |
class CodeAgent:
|
| 262 |
-
def generate_code(self, content):
|
| 263 |
-
if not openai_client:
|
| 264 |
-
return self._professional_code(content)
|
| 265 |
-
|
| 266 |
-
|
| 267 |
-
|
| 268 |
-
|
| 269 |
-
|
| 270 |
-
|
| 271 |
-
|
| 272 |
-
|
| 273 |
-
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
|
| 277 |
-
|
| 278 |
-
|
| 279 |
-
|
| 280 |
-
|
| 281 |
-
|
| 282 |
-
|
| 283 |
-
|
| 284 |
-
|
| 285 |
-
|
| 286 |
-
|
| 287 |
-
|
| 288 |
-
|
| 289 |
-
|
| 290 |
-
|
| 291 |
-
|
| 292 |
-
|
| 293 |
-
|
| 294 |
-
return response.choices[0].message.content
|
| 295 |
-
except Exception:
|
| 296 |
-
return self._professional_code(content)
|
| 297 |
|
| 298 |
-
def _professional_code(self, content):
|
| 299 |
-
|
| 300 |
Business Solution Framework
|
| 301 |
python
|
| 302 |
class PromptOptimizer:
|
| 303 |
-
def
|
| 304 |
-
self.model = model
|
| 305 |
-
self.pattern_library = {{
|
| 306 |
-
"financial_analysis": "Extract key metrics from financial reports",
|
| 307 |
-
"customer_service": "Resolve tier-2 support tickets"
|
| 308 |
-
}}
|
| 309 |
-
|
| 310 |
-
|
| 311 |
-
|
| 312 |
-
|
| 313 |
-
|
| 314 |
-
|
| 315 |
-
|
| 316 |
-
|
| 317 |
-
|
| 318 |
-
return current_cost * expected_efficiency
|
| 319 |
-
Example usage
|
| 320 |
optimizer = PromptOptimizer()
|
| 321 |
-
print(optimizer.calculate_roi(500000, 0.35))
|
| 322 |
|
| 323 |
Security Best Practices
|
| 324 |
python
|
| 325 |
def secure_prompt_handling(user_input):
|
| 326 |
-
# Implement OWASP security standards
|
| 327 |
-
sanitized = sanitize_input(user_input)
|
| 328 |
-
validate_business_context(sanitized)
|
| 329 |
-
return apply_enterprise_guardrails(sanitized)
|
| 330 |
|
| 331 |
Integration Pattern: CRM System
|
| 332 |
python
|
| 333 |
def integrate_with_salesforce(prompt, salesforce_data):
|
| 334 |
-
# Enterprise integration example
|
| 335 |
-
enriched_prompt = f"{{prompt}} using {{salesforce_data}}"
|
| 336 |
-
return call_ai_api(enriched_prompt)
|
| 337 |
"""
|
| 338 |
|
| 339 |
class DesignAgent:
|
| 340 |
-
def generate_design(self, slide_content):
|
| 341 |
-
if not openai_client:
|
| 342 |
-
return None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 343 |
|
| 344 |
-
kotlin
|
| 345 |
-
Copy
|
| 346 |
-
Edit
|
| 347 |
-
try:
|
| 348 |
-
response = openai_client.images.generate(
|
| 349 |
-
model="dall-e-3",
|
| 350 |
-
prompt=(
|
| 351 |
-
f"Professional corporate slide background for '{slide_content[:200]}' workshop. "
|
| 352 |
-
"Modern business style, clean lines, premium gradient, boardroom appropriate. "
|
| 353 |
-
"Include abstract technology elements in corporate colors."
|
| 354 |
-
),
|
| 355 |
-
n=1,
|
| 356 |
-
size="1024x1024"
|
| 357 |
-
)
|
| 358 |
-
return response.data[0].url
|
| 359 |
-
except Exception:
|
| 360 |
-
return None
|
| 361 |
class VoiceoverAgent:
|
| 362 |
-
def
|
| 363 |
-
self.api_key = ELEVENLABS_API_KEY
|
| 364 |
-
self.voice_id = "21m00Tcm4TlvDq8ikWAM"
|
| 365 |
-
self.model = "eleven_monolingual_v1"
|
| 366 |
-
|
| 367 |
-
|
| 368 |
-
|
| 369 |
-
|
| 370 |
-
|
| 371 |
-
|
| 372 |
-
|
| 373 |
-
|
| 374 |
-
|
| 375 |
-
|
| 376 |
-
|
| 377 |
-
|
| 378 |
-
|
| 379 |
-
"Accept": "audio/mpeg",
|
| 380 |
-
"Content-Type": "application/json",
|
| 381 |
-
"xi-api-key": self.api_key
|
| 382 |
-
}
|
| 383 |
-
data = {
|
| 384 |
-
"text": text,
|
| 385 |
-
"model_id": self.model,
|
| 386 |
-
"voice_settings": {
|
| 387 |
-
"stability": 0.7,
|
| 388 |
-
"similarity_boost": 0.8,
|
| 389 |
-
"style": 0.5,
|
| 390 |
-
"use_speaker_boost": True
|
| 391 |
}
|
| 392 |
-
|
| 393 |
-
|
| 394 |
-
|
| 395 |
-
|
| 396 |
-
|
| 397 |
-
|
| 398 |
-
|
| 399 |
-
|
| 400 |
-
|
| 401 |
-
|
| 402 |
-
|
| 403 |
-
|
| 404 |
-
|
| 405 |
-
|
| 406 |
-
|
| 407 |
-
|
| 408 |
-
|
| 409 |
-
|
| 410 |
-
|
| 411 |
-
|
| 412 |
-
|
| 413 |
-
|
| 414 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
openai_client = OpenAI(api_key=os.getenv("OPENAI_API_KEY")) if os.getenv("OPENAI_API_KEY") else None
|
| 12 |
ELEVENLABS_API_KEY = os.getenv("ELEVENLABS_API_KEY")
|
| 13 |
|
|
|
|
| 14 |
class TopicAgent:
|
| 15 |
def generate_outline(self, topic, duration, difficulty):
|
| 16 |
if not openai_client:
|
| 17 |
return self._mock_outline(topic, duration, difficulty)
|
| 18 |
+
|
| 19 |
try:
|
| 20 |
response = openai_client.chat.completions.create(
|
| 21 |
model="gpt-4-turbo",
|
|
|
|
| 44 |
response_format={"type": "json_object"}
|
| 45 |
)
|
| 46 |
return json.loads(response.choices[0].message.content)
|
| 47 |
+
except Exception as e:
|
| 48 |
return self._mock_outline(topic, duration, difficulty)
|
| 49 |
+
|
| 50 |
def _mock_outline(self, topic, duration, difficulty):
|
| 51 |
return {
|
| 52 |
"title": f"Mastering {topic} for Business Impact",
|
|
|
|
| 90 |
]
|
| 91 |
}
|
| 92 |
|
|
|
|
| 93 |
class ContentAgent:
|
| 94 |
def generate_content(self, outline):
|
| 95 |
if not openai_client:
|
| 96 |
return self._mock_content(outline)
|
| 97 |
+
|
| 98 |
try:
|
| 99 |
response = openai_client.chat.completions.create(
|
| 100 |
model="gpt-4-turbo",
|
|
|
|
| 126 |
response_format={"type": "json_object"}
|
| 127 |
)
|
| 128 |
return json.loads(response.choices[0].message.content)
|
| 129 |
+
except Exception as e:
|
| 130 |
return self._mock_content(outline)
|
| 131 |
+
|
| 132 |
def _mock_content(self, outline):
|
| 133 |
return {
|
| 134 |
"workshop_title": outline.get("title", "Premium AI Workshop"),
|
|
|
|
| 170 |
]
|
| 171 |
}
|
| 172 |
|
|
|
|
| 173 |
class SlideAgent:
|
| 174 |
def generate_slides(self, content):
|
| 175 |
if not openai_client:
|
| 176 |
return self._professional_slides(content)
|
| 177 |
+
|
| 178 |
try:
|
| 179 |
response = openai_client.chat.completions.create(
|
| 180 |
model="gpt-4-turbo",
|
|
|
|
| 201 |
max_tokens=2500
|
| 202 |
)
|
| 203 |
return response.choices[0].message.content
|
| 204 |
+
except Exception as e:
|
| 205 |
return self._professional_slides(content)
|
| 206 |
+
|
| 207 |
def _professional_slides(self, content):
|
| 208 |
return f"""---
|
| 209 |
marp: true
|
|
|
|
| 256 |
"""
|
| 257 |
|
| 258 |
class CodeAgent:
|
| 259 |
+
def generate_code(self, content):
|
| 260 |
+
if not openai_client:
|
| 261 |
+
return self._professional_code(content)
|
| 262 |
+
|
| 263 |
+
try:
|
| 264 |
+
response = openai_client.chat.completions.create(
|
| 265 |
+
model="gpt-4-turbo",
|
| 266 |
+
messages=[
|
| 267 |
+
{
|
| 268 |
+
"role": "system",
|
| 269 |
+
"content": (
|
| 270 |
+
"You are an enterprise solutions architect. Create professional-grade code labs with: "
|
| 271 |
+
"1) Production-ready patterns 2) Comprehensive documentation "
|
| 272 |
+
"3) Enterprise security practices 4) Scalable architectures. "
|
| 273 |
+
"Use Python with the latest best practices."
|
| 274 |
+
)
|
| 275 |
+
},
|
| 276 |
+
{
|
| 277 |
+
"role": "user",
|
| 278 |
+
"content": (
|
| 279 |
+
f"Create a professional code lab for: {json.dumps(content)}. "
|
| 280 |
+
"Include: Setup instructions, business solution patterns, "
|
| 281 |
+
"enterprise integration examples, and security best practices."
|
| 282 |
+
)
|
| 283 |
+
}
|
| 284 |
+
],
|
| 285 |
+
temperature=0.3,
|
| 286 |
+
max_tokens=2500
|
| 287 |
+
)
|
| 288 |
+
return response.choices[0].message.content
|
| 289 |
+
except Exception as e:
|
| 290 |
+
return self._professional_code(content)
|
|
|
|
|
|
|
|
|
|
| 291 |
|
| 292 |
+
def _professional_code(self, content):
|
| 293 |
+
return f"""# Enterprise-Grade Prompt Engineering Lab
|
| 294 |
Business Solution Framework
|
| 295 |
python
|
| 296 |
class PromptOptimizer:
|
| 297 |
+
def __init__(self, model="gpt-4-turbo"):
|
| 298 |
+
self.model = model
|
| 299 |
+
self.pattern_library = {{
|
| 300 |
+
"financial_analysis": "Extract key metrics from financial reports",
|
| 301 |
+
"customer_service": "Resolve tier-2 support tickets"
|
| 302 |
+
}}
|
| 303 |
+
|
| 304 |
+
def optimize_prompt(self, business_case):
|
| 305 |
+
# Implement enterprise optimization logic
|
| 306 |
+
return f"Business-optimized prompt for {{business_case}}"
|
| 307 |
+
|
| 308 |
+
def calculate_roi(self, current_cost, expected_efficiency):
|
| 309 |
+
return current_cost * expected_efficiency
|
| 310 |
+
|
| 311 |
+
# Example usage
|
|
|
|
|
|
|
| 312 |
optimizer = PromptOptimizer()
|
| 313 |
+
print(optimizer.calculate_roi(500000, 0.35)) # $175,000 savings
|
| 314 |
|
| 315 |
Security Best Practices
|
| 316 |
python
|
| 317 |
def secure_prompt_handling(user_input):
|
| 318 |
+
# Implement OWASP security standards
|
| 319 |
+
sanitized = sanitize_input(user_input)
|
| 320 |
+
validate_business_context(sanitized)
|
| 321 |
+
return apply_enterprise_guardrails(sanitized)
|
| 322 |
|
| 323 |
Integration Pattern: CRM System
|
| 324 |
python
|
| 325 |
def integrate_with_salesforce(prompt, salesforce_data):
|
| 326 |
+
# Enterprise integration example
|
| 327 |
+
enriched_prompt = f"{{prompt}} using {{salesforce_data}}"
|
| 328 |
+
return call_ai_api(enriched_prompt)
|
| 329 |
"""
|
| 330 |
|
| 331 |
class DesignAgent:
|
| 332 |
+
def generate_design(self, slide_content):
|
| 333 |
+
if not openai_client:
|
| 334 |
+
return None
|
| 335 |
+
|
| 336 |
+
try:
|
| 337 |
+
response = openai_client.images.generate(
|
| 338 |
+
model="dall-e-3",
|
| 339 |
+
prompt=(
|
| 340 |
+
f"Professional corporate slide background for '{slide_content[:200]}' workshop. "
|
| 341 |
+
"Modern business style, clean lines, premium gradient, boardroom appropriate. "
|
| 342 |
+
"Include abstract technology elements in corporate colors."
|
| 343 |
+
),
|
| 344 |
+
n=1,
|
| 345 |
+
size="1024x1024"
|
| 346 |
+
)
|
| 347 |
+
return response.data[0].url
|
| 348 |
+
except Exception as e:
|
| 349 |
+
return None
|
| 350 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 351 |
class VoiceoverAgent:
|
| 352 |
+
def __init__(self):
|
| 353 |
+
self.api_key = ELEVENLABS_API_KEY
|
| 354 |
+
self.voice_id = "21m00Tcm4TlvDq8ikWAM" # Default voice ID
|
| 355 |
+
self.model = "eleven_monolingual_v1"
|
| 356 |
+
|
| 357 |
+
def generate_voiceover(self, text, voice_id=None):
|
| 358 |
+
if not self.api_key:
|
| 359 |
+
return None
|
| 360 |
+
|
| 361 |
+
try:
|
| 362 |
+
voice = voice_id if voice_id else self.voice_id
|
| 363 |
+
|
| 364 |
+
url = f"https://api.elevenlabs.io/v1/text-to-speech/{voice}"
|
| 365 |
+
headers = {
|
| 366 |
+
"Accept": "audio/mpeg",
|
| 367 |
+
"Content-Type": "application/json",
|
| 368 |
+
"xi-api-key": self.api_key
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 369 |
}
|
| 370 |
+
data = {
|
| 371 |
+
"text": text,
|
| 372 |
+
"model_id": self.model,
|
| 373 |
+
"voice_settings": {
|
| 374 |
+
"stability": 0.7,
|
| 375 |
+
"similarity_boost": 0.8,
|
| 376 |
+
"style": 0.5,
|
| 377 |
+
"use_speaker_boost": True
|
| 378 |
+
}
|
| 379 |
+
}
|
| 380 |
+
response = requests.post(url, json=data, headers=headers)
|
| 381 |
+
|
| 382 |
+
if response.status_code == 200:
|
| 383 |
+
return response.content
|
| 384 |
+
return None
|
| 385 |
+
except Exception as e:
|
| 386 |
+
return None
|
| 387 |
+
|
| 388 |
+
def get_voices(self):
|
| 389 |
+
if not self.api_key:
|
| 390 |
+
return []
|
| 391 |
+
|
| 392 |
+
try:
|
| 393 |
+
url = "https://api.elevenlabs.io/v1/voices"
|
| 394 |
+
headers = {"xi-api-key": self.api_key}
|
| 395 |
+
response = requests.get(url, headers=headers)
|
| 396 |
+
|
| 397 |
+
if response.status_code == 200:
|
| 398 |
+
return response.json().get("voices", [])
|
| 399 |
+
return []
|
| 400 |
+
except Exception as e:
|
| 401 |
+
return []
|