Create agents/topic_agent.py
Browse files- agents/topic_agent.py +38 -0
agents/topic_agent.py
ADDED
|
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# File: agents/topic_agent.py
|
| 2 |
+
import json
|
| 3 |
+
|
| 4 |
+
class TopicAgent:
|
| 5 |
+
def generate_outline(self, topic, duration, difficulty):
|
| 6 |
+
# In production: Replace with actual LLM API call
|
| 7 |
+
return {
|
| 8 |
+
"topic": topic,
|
| 9 |
+
"duration": f"{duration} hours",
|
| 10 |
+
"difficulty": difficulty,
|
| 11 |
+
"goals": [
|
| 12 |
+
f"Master advanced {topic} techniques",
|
| 13 |
+
"Develop industry-specific applications",
|
| 14 |
+
"Build and evaluate complex AI workflows",
|
| 15 |
+
"Implement best practices for production"
|
| 16 |
+
],
|
| 17 |
+
"modules": [
|
| 18 |
+
{
|
| 19 |
+
"title": f"Fundamentals of {topic}",
|
| 20 |
+
"duration": "30 min",
|
| 21 |
+
"learning_points": [
|
| 22 |
+
"Core principles and terminology",
|
| 23 |
+
"Patterns and anti-patterns",
|
| 24 |
+
"Evaluation frameworks"
|
| 25 |
+
]
|
| 26 |
+
},
|
| 27 |
+
{
|
| 28 |
+
"title": f"{topic} for Enterprise Applications",
|
| 29 |
+
"duration": "45 min",
|
| 30 |
+
"learning_points": [
|
| 31 |
+
"Industry-specific use cases",
|
| 32 |
+
"Integration with existing systems",
|
| 33 |
+
"Scalability considerations"
|
| 34 |
+
]
|
| 35 |
+
}
|
| 36 |
+
# Additional modules would be generated here
|
| 37 |
+
]
|
| 38 |
+
}
|