Delete agents.py
Browse files
agents.py
DELETED
|
@@ -1,401 +0,0 @@
|
|
| 1 |
-
import json
|
| 2 |
-
import os
|
| 3 |
-
import requests
|
| 4 |
-
from dotenv import load_dotenv
|
| 5 |
-
from openai import OpenAI
|
| 6 |
-
|
| 7 |
-
# Load environment variables
|
| 8 |
-
load_dotenv()
|
| 9 |
-
|
| 10 |
-
# Initialize API clients
|
| 11 |
-
openai_client = OpenAI(api_key=os.getenv("OPENAI_API_KEY")) if os.getenv("OPENAI_API_KEY") else None
|
| 12 |
-
ELEVENLABS_API_KEY = os.getenv("ELEVENLABS_API_KEY")
|
| 13 |
-
|
| 14 |
-
class TopicAgent:
|
| 15 |
-
def generate_outline(self, topic, duration, difficulty):
|
| 16 |
-
if not openai_client:
|
| 17 |
-
return self._mock_outline(topic, duration, difficulty)
|
| 18 |
-
|
| 19 |
-
try:
|
| 20 |
-
response = openai_client.chat.completions.create(
|
| 21 |
-
model="gpt-4-turbo",
|
| 22 |
-
messages=[
|
| 23 |
-
{
|
| 24 |
-
"role": "system",
|
| 25 |
-
"content": (
|
| 26 |
-
"You are an expert corporate trainer with 20+ years of experience creating "
|
| 27 |
-
"high-value workshops for Fortune 500 companies. Create a professional workshop outline that "
|
| 28 |
-
"includes: 1) Clear learning objectives, 2) Practical real-world exercises, "
|
| 29 |
-
"3) Industry case studies, 4) Measurable outcomes. Format as JSON."
|
| 30 |
-
)
|
| 31 |
-
},
|
| 32 |
-
{
|
| 33 |
-
"role": "user",
|
| 34 |
-
"content": (
|
| 35 |
-
f"Create a comprehensive {duration}-hour {difficulty} workshop outline on '{topic}' for corporate executives. "
|
| 36 |
-
"Structure: title, duration, difficulty, learning_goals (3-5 bullet points), "
|
| 37 |
-
"modules (5-7 modules). Each module should have: title, duration, learning_points (3 bullet points), "
|
| 38 |
-
"case_study (real company example), exercises (2 practical exercises)."
|
| 39 |
-
)
|
| 40 |
-
}
|
| 41 |
-
],
|
| 42 |
-
temperature=0.3,
|
| 43 |
-
max_tokens=1500,
|
| 44 |
-
response_format={"type": "json_object"}
|
| 45 |
-
)
|
| 46 |
-
return json.loads(response.choices[0].message.content)
|
| 47 |
-
except Exception as e:
|
| 48 |
-
return self._mock_outline(topic, duration, difficulty)
|
| 49 |
-
|
| 50 |
-
def _mock_outline(self, topic, duration, difficulty):
|
| 51 |
-
return {
|
| 52 |
-
"title": f"Mastering {topic} for Business Impact",
|
| 53 |
-
"duration": f"{duration} hours",
|
| 54 |
-
"difficulty": difficulty,
|
| 55 |
-
"learning_goals": [
|
| 56 |
-
"Apply advanced techniques to real business challenges",
|
| 57 |
-
"Measure ROI of prompt engineering initiatives",
|
| 58 |
-
"Develop organizational prompt engineering standards",
|
| 59 |
-
"Implement ethical AI governance frameworks"
|
| 60 |
-
],
|
| 61 |
-
"modules": [
|
| 62 |
-
{
|
| 63 |
-
"title": "Strategic Foundations",
|
| 64 |
-
"duration": "45 min",
|
| 65 |
-
"learning_points": [
|
| 66 |
-
"Business value assessment framework",
|
| 67 |
-
"ROI calculation models",
|
| 68 |
-
"Stakeholder alignment strategies"
|
| 69 |
-
],
|
| 70 |
-
"case_study": "How JPMorgan reduced operational costs by 37% with prompt optimization",
|
| 71 |
-
"exercises": [
|
| 72 |
-
"Calculate potential ROI for your organization",
|
| 73 |
-
"Develop stakeholder communication plan"
|
| 74 |
-
]
|
| 75 |
-
},
|
| 76 |
-
{
|
| 77 |
-
"title": "Advanced Pattern Engineering",
|
| 78 |
-
"duration": "60 min",
|
| 79 |
-
"learning_points": [
|
| 80 |
-
"Chain-of-thought implementations",
|
| 81 |
-
"Self-correcting prompt architectures",
|
| 82 |
-
"Domain-specific pattern libraries"
|
| 83 |
-
],
|
| 84 |
-
"case_study": "McKinsey's knowledge management transformation",
|
| 85 |
-
"exercises": [
|
| 86 |
-
"Design pattern library for your industry",
|
| 87 |
-
"Implement self-correction workflow"
|
| 88 |
-
]
|
| 89 |
-
}
|
| 90 |
-
]
|
| 91 |
-
}
|
| 92 |
-
|
| 93 |
-
class ContentAgent:
|
| 94 |
-
def generate_content(self, outline):
|
| 95 |
-
if not openai_client:
|
| 96 |
-
return self._mock_content(outline)
|
| 97 |
-
|
| 98 |
-
try:
|
| 99 |
-
response = openai_client.chat.completions.create(
|
| 100 |
-
model="gpt-4-turbo",
|
| 101 |
-
messages=[
|
| 102 |
-
{
|
| 103 |
-
"role": "system",
|
| 104 |
-
"content": (
|
| 105 |
-
"You are a senior instructional designer creating premium corporate training materials. "
|
| 106 |
-
"Develop comprehensive workshop content with: 1) Practitioner-level insights, "
|
| 107 |
-
"2) Actionable frameworks, 3) Real-world examples, 4) Practical exercises. "
|
| 108 |
-
"Avoid generic AI content - focus on business impact."
|
| 109 |
-
)
|
| 110 |
-
},
|
| 111 |
-
{
|
| 112 |
-
"role": "user",
|
| 113 |
-
"content": (
|
| 114 |
-
f"Create premium workshop content for this outline: {json.dumps(outline)}. "
|
| 115 |
-
"For each module: "
|
| 116 |
-
"1) Detailed script (executive summary, 3 key concepts, business applications) "
|
| 117 |
-
"2) Speaker notes (presentation guidance) "
|
| 118 |
-
"3) 3 discussion questions with executive-level responses "
|
| 119 |
-
"4) 2 practical exercises with solution blueprints "
|
| 120 |
-
"Format as JSON."
|
| 121 |
-
)
|
| 122 |
-
}
|
| 123 |
-
],
|
| 124 |
-
temperature=0.4,
|
| 125 |
-
max_tokens=3000,
|
| 126 |
-
response_format={"type": "json_object"}
|
| 127 |
-
)
|
| 128 |
-
return json.loads(response.choices[0].message.content)
|
| 129 |
-
except Exception as e:
|
| 130 |
-
return self._mock_content(outline)
|
| 131 |
-
|
| 132 |
-
def _mock_content(self, outline):
|
| 133 |
-
return {
|
| 134 |
-
"workshop_title": outline.get("title", "Premium AI Workshop"),
|
| 135 |
-
"modules": [
|
| 136 |
-
{
|
| 137 |
-
"title": "Strategic Foundations",
|
| 138 |
-
"script": (
|
| 139 |
-
"## Executive Summary\n"
|
| 140 |
-
"This module establishes the business case for advanced prompt engineering, "
|
| 141 |
-
"focusing on measurable ROI and stakeholder alignment.\n\n"
|
| 142 |
-
"### Key Concepts:\n"
|
| 143 |
-
"1. **Value Assessment Framework**: Quantify potential savings and revenue opportunities\n"
|
| 144 |
-
"2. **ROI Calculation Models**: Custom models for different industries\n"
|
| 145 |
-
"3. **Stakeholder Alignment**: Executive communication strategies\n\n"
|
| 146 |
-
"### Business Applications:\n"
|
| 147 |
-
"- Cost reduction in customer service operations\n"
|
| 148 |
-
"- Acceleration of R&D processes\n"
|
| 149 |
-
"- Enhanced competitive intelligence"
|
| 150 |
-
),
|
| 151 |
-
"speaker_notes": [
|
| 152 |
-
"Emphasize real dollar impact - use JPMorgan case study numbers",
|
| 153 |
-
"Show ROI calculator template",
|
| 154 |
-
"Highlight C-suite communication strategies"
|
| 155 |
-
],
|
| 156 |
-
"discussion_questions": [
|
| 157 |
-
{
|
| 158 |
-
"question": "How could prompt engineering impact your bottom line?",
|
| 159 |
-
"response": "Typical results: 30-40% operational efficiency gains, 15-25% innovation acceleration"
|
| 160 |
-
}
|
| 161 |
-
],
|
| 162 |
-
"exercises": [
|
| 163 |
-
{
|
| 164 |
-
"title": "ROI Calculation Workshop",
|
| 165 |
-
"instructions": "Calculate potential savings using our enterprise ROI model",
|
| 166 |
-
"solution": "Template: (Current Cost × Efficiency Gain) - Implementation Cost"
|
| 167 |
-
}
|
| 168 |
-
]
|
| 169 |
-
}
|
| 170 |
-
]
|
| 171 |
-
}
|
| 172 |
-
|
| 173 |
-
class SlideAgent:
|
| 174 |
-
def generate_slides(self, content):
|
| 175 |
-
if not openai_client:
|
| 176 |
-
return self._professional_slides(content)
|
| 177 |
-
|
| 178 |
-
try:
|
| 179 |
-
response = openai_client.chat.completions.create(
|
| 180 |
-
model="gpt-4-turbo",
|
| 181 |
-
messages=[
|
| 182 |
-
{
|
| 183 |
-
"role": "system",
|
| 184 |
-
"content": (
|
| 185 |
-
"You are a McKinsey-level presentation specialist. Create professional slides with: "
|
| 186 |
-
"1) Clean, executive-friendly design 2) Data visualization frameworks "
|
| 187 |
-
"3) Action-oriented content 4) Brand-compliant styling. "
|
| 188 |
-
"Use Marp Markdown format with the 'gaia' theme."
|
| 189 |
-
)
|
| 190 |
-
},
|
| 191 |
-
{
|
| 192 |
-
"role": "user",
|
| 193 |
-
"content": (
|
| 194 |
-
f"Create a boardroom-quality slide deck for: {json.dumps(content)}. "
|
| 195 |
-
"Structure: Title slide, module slides (objective, 3 key points, case study, exercise), "
|
| 196 |
-
"summary slide. Include placeholders for data visualization."
|
| 197 |
-
)
|
| 198 |
-
}
|
| 199 |
-
],
|
| 200 |
-
temperature=0.2,
|
| 201 |
-
max_tokens=2500
|
| 202 |
-
)
|
| 203 |
-
return response.choices[0].message.content
|
| 204 |
-
except Exception as e:
|
| 205 |
-
return self._professional_slides(content)
|
| 206 |
-
|
| 207 |
-
def _professional_slides(self, content):
|
| 208 |
-
return f"""---
|
| 209 |
-
marp: true
|
| 210 |
-
theme: gaia
|
| 211 |
-
class: lead
|
| 212 |
-
paginate: true
|
| 213 |
-
backgroundColor: #fff
|
| 214 |
-
backgroundImage: url('https://marp.app/assets/hero-background.svg')
|
| 215 |
-
---
|
| 216 |
-
|
| 217 |
-
# {content.get('workshop_title', 'Executive AI Workshop')}
|
| 218 |
-
## Transforming Business Through Advanced AI
|
| 219 |
-
|
| 220 |
-
---
|
| 221 |
-
<!-- _class: invert -->
|
| 222 |
-
## Module 1: Strategic Foundations
|
| 223 |
-
### Driving Measurable Business Value
|
| 224 |
-
|
| 225 |
-

|
| 226 |
-
|
| 227 |
-
- **ROI Framework**: Quantifying impact
|
| 228 |
-
- **Stakeholder Alignment**: Executive buy-in strategies
|
| 229 |
-
- **Implementation Roadmap**: Phased adoption plan
|
| 230 |
-
|
| 231 |
-
---
|
| 232 |
-
## Case Study: Financial Services Transformation
|
| 233 |
-
### JPMorgan Chase
|
| 234 |
-
|
| 235 |
-
| Metric | Before | After | Improvement |
|
| 236 |
-
|--------|--------|-------|-------------|
|
| 237 |
-
| Operation Costs | $4.2M | $2.6M | 38% reduction |
|
| 238 |
-
| Process Time | 14 days | 3 days | 79% faster |
|
| 239 |
-
| Error Rate | 8.2% | 0.4% | 95% reduction |
|
| 240 |
-
|
| 241 |
-
---
|
| 242 |
-
## Practical Exercise: ROI Calculation
|
| 243 |
-
```mermaid
|
| 244 |
-
graph TD
|
| 245 |
-
A[Current Costs] --> B[Potential Savings]
|
| 246 |
-
C[Implementation Costs] --> D[Net ROI]
|
| 247 |
-
B --> D
|
| 248 |
-
Document current process costs
|
| 249 |
-
|
| 250 |
-
Estimate efficiency gains
|
| 251 |
-
|
| 252 |
-
Calculate net ROI
|
| 253 |
-
|
| 254 |
-
Q&A
|
| 255 |
-
Let's discuss your specific challenges
|
| 256 |
-
"""
|
| 257 |
-
|
| 258 |
-
class CodeAgent:
|
| 259 |
-
def generate_code(self, content):
|
| 260 |
-
if not openai_client:
|
| 261 |
-
return self._professional_code(content)
|
| 262 |
-
|
| 263 |
-
try:
|
| 264 |
-
response = openai_client.chat.completions.create(
|
| 265 |
-
model="gpt-4-turbo",
|
| 266 |
-
messages=[
|
| 267 |
-
{
|
| 268 |
-
"role": "system",
|
| 269 |
-
"content": (
|
| 270 |
-
"You are an enterprise solutions architect. Create professional-grade code labs with: "
|
| 271 |
-
"1) Production-ready patterns 2) Comprehensive documentation "
|
| 272 |
-
"3) Enterprise security practices 4) Scalable architectures. "
|
| 273 |
-
"Use Python with the latest best practices."
|
| 274 |
-
)
|
| 275 |
-
},
|
| 276 |
-
{
|
| 277 |
-
"role": "user",
|
| 278 |
-
"content": (
|
| 279 |
-
f"Create a professional code lab for: {json.dumps(content)}. "
|
| 280 |
-
"Include: Setup instructions, business solution patterns, "
|
| 281 |
-
"enterprise integration examples, and security best practices."
|
| 282 |
-
)
|
| 283 |
-
}
|
| 284 |
-
],
|
| 285 |
-
temperature=0.3,
|
| 286 |
-
max_tokens=2500
|
| 287 |
-
)
|
| 288 |
-
return response.choices[0].message.content
|
| 289 |
-
except Exception as e:
|
| 290 |
-
return self._professional_code(content)
|
| 291 |
-
|
| 292 |
-
def _professional_code(self, content):
|
| 293 |
-
return f"""# Enterprise-Grade Prompt Engineering Lab
|
| 294 |
-
Business Solution Framework
|
| 295 |
-
python
|
| 296 |
-
class PromptOptimizer:
|
| 297 |
-
def __init__(self, model="gpt-4-turbo"):
|
| 298 |
-
self.model = model
|
| 299 |
-
self.pattern_library = {{
|
| 300 |
-
"financial_analysis": "Extract key metrics from financial reports",
|
| 301 |
-
"customer_service": "Resolve tier-2 support tickets"
|
| 302 |
-
}}
|
| 303 |
-
|
| 304 |
-
def optimize_prompt(self, business_case):
|
| 305 |
-
# Implement enterprise optimization logic
|
| 306 |
-
return f"Business-optimized prompt for {{business_case}}"
|
| 307 |
-
|
| 308 |
-
def calculate_roi(self, current_cost, expected_efficiency):
|
| 309 |
-
return current_cost * expected_efficiency
|
| 310 |
-
|
| 311 |
-
# Example usage
|
| 312 |
-
optimizer = PromptOptimizer()
|
| 313 |
-
print(optimizer.calculate_roi(500000, 0.35)) # $175,000 savings
|
| 314 |
-
|
| 315 |
-
Security Best Practices
|
| 316 |
-
python
|
| 317 |
-
def secure_prompt_handling(user_input):
|
| 318 |
-
# Implement OWASP security standards
|
| 319 |
-
sanitized = sanitize_input(user_input)
|
| 320 |
-
validate_business_context(sanitized)
|
| 321 |
-
return apply_enterprise_guardrails(sanitized)
|
| 322 |
-
|
| 323 |
-
Integration Pattern: CRM System
|
| 324 |
-
python
|
| 325 |
-
def integrate_with_salesforce(prompt, salesforce_data):
|
| 326 |
-
# Enterprise integration example
|
| 327 |
-
enriched_prompt = f"{{prompt}} using {{salesforce_data}}"
|
| 328 |
-
return call_ai_api(enriched_prompt)
|
| 329 |
-
"""
|
| 330 |
-
|
| 331 |
-
class DesignAgent:
|
| 332 |
-
def generate_design(self, slide_content):
|
| 333 |
-
if not openai_client:
|
| 334 |
-
return None
|
| 335 |
-
|
| 336 |
-
try:
|
| 337 |
-
response = openai_client.images.generate(
|
| 338 |
-
model="dall-e-3",
|
| 339 |
-
prompt=(
|
| 340 |
-
f"Professional corporate slide background for '{slide_content[:200]}' workshop. "
|
| 341 |
-
"Modern business style, clean lines, premium gradient, boardroom appropriate. "
|
| 342 |
-
"Include abstract technology elements in corporate colors."
|
| 343 |
-
),
|
| 344 |
-
n=1,
|
| 345 |
-
size="1024x1024"
|
| 346 |
-
)
|
| 347 |
-
return response.data[0].url
|
| 348 |
-
except Exception as e:
|
| 349 |
-
return None
|
| 350 |
-
|
| 351 |
-
class VoiceoverAgent:
|
| 352 |
-
def __init__(self):
|
| 353 |
-
self.api_key = ELEVENLABS_API_KEY
|
| 354 |
-
self.voice_id = "21m00Tcm4TlvDq8ikWAM" # Default voice ID
|
| 355 |
-
self.model = "eleven_monolingual_v1"
|
| 356 |
-
|
| 357 |
-
def generate_voiceover(self, text, voice_id=None):
|
| 358 |
-
if not self.api_key:
|
| 359 |
-
return None
|
| 360 |
-
|
| 361 |
-
try:
|
| 362 |
-
voice = voice_id if voice_id else self.voice_id
|
| 363 |
-
|
| 364 |
-
url = f"https://api.elevenlabs.io/v1/text-to-speech/{voice}"
|
| 365 |
-
headers = {
|
| 366 |
-
"Accept": "audio/mpeg",
|
| 367 |
-
"Content-Type": "application/json",
|
| 368 |
-
"xi-api-key": self.api_key
|
| 369 |
-
}
|
| 370 |
-
data = {
|
| 371 |
-
"text": text,
|
| 372 |
-
"model_id": self.model,
|
| 373 |
-
"voice_settings": {
|
| 374 |
-
"stability": 0.7,
|
| 375 |
-
"similarity_boost": 0.8,
|
| 376 |
-
"style": 0.5,
|
| 377 |
-
"use_speaker_boost": True
|
| 378 |
-
}
|
| 379 |
-
}
|
| 380 |
-
response = requests.post(url, json=data, headers=headers)
|
| 381 |
-
|
| 382 |
-
if response.status_code == 200:
|
| 383 |
-
return response.content
|
| 384 |
-
return None
|
| 385 |
-
except Exception as e:
|
| 386 |
-
return None
|
| 387 |
-
|
| 388 |
-
def get_voices(self):
|
| 389 |
-
if not self.api_key:
|
| 390 |
-
return []
|
| 391 |
-
|
| 392 |
-
try:
|
| 393 |
-
url = "https://api.elevenlabs.io/v1/voices"
|
| 394 |
-
headers = {"xi-api-key": self.api_key}
|
| 395 |
-
response = requests.get(url, headers=headers)
|
| 396 |
-
|
| 397 |
-
if response.status_code == 200:
|
| 398 |
-
return response.json().get("voices", [])
|
| 399 |
-
return []
|
| 400 |
-
except Exception as e:
|
| 401 |
-
return []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|