Spaces:
Runtime error
Runtime error
| import subprocess | |
| import os | |
| import torch | |
| import gradio as gr | |
| import os | |
| import spaces | |
| from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer | |
| from threading import Thread | |
| from transformers.utils.import_utils import _is_package_available | |
| # Set an environment variable | |
| HF_TOKEN = os.environ.get("HF_TOKEN", None) | |
| DESCRIPTION = """ | |
| # [MInference 1.0: Accelerating Pre-filling for Long-Context LLMs via Dynamic Sparse Attention](https://aka.ms/MInference) (NeurIPS'24 Spotlight) | |
| _Huiqiang Jiang†, Yucheng Li†, Chengruidong Zhang†, Qianhui Wu, Xufang Luo, Surin Ahn, Zhenhua Han, Amir H. Abdi, Dongsheng Li, Chin-Yew Lin, Yuqing Yang and Lili Qiu_ | |
| <h3 style="text-align: center;"><a href="https://github.com/microsoft/MInference" target="blank"> [Code]</a> | |
| <a href="https://aka.ms/MInference" target="blank"> [Project Page]</a> | |
| <a href="https://arxiv.org/abs/2407.02490" target="blank"> [Paper]</a></h3> | |
| ## News | |
| - 🧤 [24/09/26] MInference has been accepted as **spotlight** at **NeurIPS'24**. See you in Vancouver! | |
| - 👘 [24/09/16] We are pleased to announce the release of our KV cache offloading work, [RetrievalAttention](https://aka.ms/RetrievalAttention), which accelerates long-context LLM inference via vector retrieval. | |
| - 🥤 [24/07/24] MInference support [meta-llama/Meta-Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct) now. | |
| - 🪗 [24/07/07] Thanks @AK for sponsoring. You can now use MInference online in the [HF Demo](https://huggingface.co/spaces/microsoft/MInference) with ZeroGPU. | |
| - 📃 [24/07/03] Due to an issue with arXiv, the PDF is currently unavailable there. You can find the paper at this [link](https://export.arxiv.org/pdf/2407.02490). | |
| - 🧩 [24/07/03] We will present **MInference 1.0** at the _**Microsoft Booth**_ and _**ES-FoMo**_ at ICML'24. See you in Vienna! | |
| <font color="brown"><b>This is only a deployment demo. You can follow the code below to try MInference locally.</b></font> | |
| ```bash | |
| git clone https://huggingface.co/spaces/microsoft/MInference | |
| cd MInference | |
| pip install -r requirments.txt | |
| pip install flash_attn pycuda==2023.1 | |
| python app.py | |
| ``` | |
| """ | |
| LICENSE = """ | |
| <div style="text-align: center;"> | |
| <p>© 2024 Microsoft</p> | |
| </div> | |
| """ | |
| PLACEHOLDER = """ | |
| <div style="padding: 30px; text-align: center; display: flex; flex-direction: column; align-items: center;"> | |
| <h1 style="font-size: 28px; margin-bottom: 2px; opacity: 0.55;">LLaMA-3-8B-Gradient-1M w/ MInference</h1> | |
| <p style="font-size: 18px; margin-bottom: 2px; opacity: 0.65;">Ask me anything...</p> | |
| </div> | |
| """ | |
| css = """ | |
| h1 { | |
| text-align: center; | |
| display: block; | |
| } | |
| """ | |
| # Load the tokenizer and model | |
| model_name = "gradientai/Llama-3-8B-Instruct-Gradient-1048k" if torch.cuda.is_available() else "Qwen/Qwen2-0.5B" | |
| tokenizer = AutoTokenizer.from_pretrained(model_name) | |
| model = AutoModelForCausalLM.from_pretrained( | |
| model_name, torch_dtype="auto", device_map="auto" | |
| ) # to("cuda:0") | |
| if torch.cuda.is_available() and _is_package_available("pycuda"): | |
| from minference import MInference | |
| minference_patch = MInference("minference", model_name) | |
| model = minference_patch(model) | |
| terminators = [tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids("<|eot_id|>")] | |
| def chat_llama3_8b( | |
| message: str, history: list, temperature: float, max_new_tokens: int | |
| ) -> str: | |
| """ | |
| Generate a streaming response using the llama3-8b model. | |
| Args: | |
| message (str): The input message. | |
| history (list): The conversation history used by ChatInterface. | |
| temperature (float): The temperature for generating the response. | |
| max_new_tokens (int): The maximum number of new tokens to generate. | |
| Returns: | |
| str: The generated response. | |
| """ | |
| # global model | |
| conversation = [] | |
| for user, assistant in history: | |
| conversation.extend( | |
| [ | |
| {"role": "user", "content": user}, | |
| {"role": "assistant", "content": assistant}, | |
| ] | |
| ) | |
| conversation.append({"role": "user", "content": message}) | |
| input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt").to( | |
| model.device | |
| ) | |
| streamer = TextIteratorStreamer( | |
| tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True | |
| ) | |
| generate_kwargs = dict( | |
| input_ids=input_ids, | |
| streamer=streamer, | |
| max_new_tokens=max_new_tokens, | |
| do_sample=True, | |
| temperature=temperature, | |
| eos_token_id=terminators, | |
| ) | |
| # This will enforce greedy generation (do_sample=False) when the temperature is passed 0, avoiding the crash. | |
| if temperature == 0: | |
| generate_kwargs["do_sample"] = False | |
| t = Thread(target=model.generate, kwargs=generate_kwargs) | |
| t.start() | |
| outputs = [] | |
| for text in streamer: | |
| outputs.append(text) | |
| # print(outputs) | |
| yield "".join(outputs) | |
| # Gradio block | |
| chatbot = gr.Chatbot(height=450, placeholder=PLACEHOLDER, label="Gradio ChatInterface") | |
| with gr.Blocks(fill_height=True, css=css) as demo: | |
| gr.Markdown(DESCRIPTION) | |
| gr.ChatInterface( | |
| fn=chat_llama3_8b, | |
| chatbot=chatbot, | |
| fill_height=True, | |
| additional_inputs_accordion=gr.Accordion( | |
| label="⚙️ Parameters", open=False, render=False | |
| ), | |
| additional_inputs=[ | |
| gr.Slider( | |
| minimum=0, | |
| maximum=1, | |
| step=0.1, | |
| value=0.95, | |
| label="Temperature", | |
| render=False, | |
| ), | |
| gr.Slider( | |
| minimum=128, | |
| maximum=4096, | |
| step=1, | |
| value=512, | |
| label="Max new tokens", | |
| render=False, | |
| ), | |
| ], | |
| examples=[ | |
| ["How to setup a human base on Mars? Give short answer."], | |
| ["Explain theory of relativity to me like I’m 8 years old."], | |
| ["What is 9,000 * 9,000?"], | |
| ["Write a pun-filled happy birthday message to my friend Alex."], | |
| ["Justify why a penguin might make a good king of the jungle."], | |
| ], | |
| cache_examples=False, | |
| ) | |
| gr.Markdown(LICENSE) | |
| if __name__ == "__main__": | |
| demo.launch(share=False) | |