Spaces:
Paused
Paused
| import gradio as grad | |
| import torch | |
| from transformers import AutoModelForCausalLM, AutoTokenizer | |
| def load_prompter(): | |
| prompter_model = AutoModelForCausalLM.from_pretrained("microsoft/Promptist") | |
| tokenizer = AutoTokenizer.from_pretrained("gpt2") | |
| tokenizer.pad_token = tokenizer.eos_token | |
| tokenizer.padding_side = "left" | |
| return prompter_model, tokenizer | |
| prompter_model, prompter_tokenizer = load_prompter() | |
| def generate(plain_text): | |
| input_ids = prompter_tokenizer(plain_text.strip()+" Rephrase:", return_tensors="pt").input_ids | |
| eos_id = prompter_tokenizer.eos_token_id | |
| outputs = prompter_model.generate(input_ids, do_sample=False, max_new_tokens=75, num_beams=8, num_return_sequences=8, eos_token_id=eos_id, pad_token_id=eos_id, length_penalty=-1.0) | |
| output_texts = prompter_tokenizer.batch_decode(outputs, skip_special_tokens=True) | |
| res = output_texts[0].replace(plain_text+" Rephrase:", "").strip() | |
| return res | |
| txt = grad.Textbox(lines=1, label="Initial Text", placeholder="Input Prompt") | |
| out = grad.Textbox(lines=1, label="Optimized Prompt") | |
| examples = ["A rabbit is wearing a space suit", "Several railroad tracks with one train passing by", "The roof is wet from the rain", "Cats dancing in a space club"] | |
| grad.Interface(fn=generate, | |
| inputs=txt, | |
| outputs=out, | |
| title="Promptist Demo", | |
| description="Promptist is a prompt interface for Stable Diffusion v1-4 (https://huggingface.co/CompVis/stable-diffusion-v1-4) that optimizes user input into model-preferred prompts. The online demo at Hugging Face Spaces is using CPU, so slow generation speed would be expected. Please load the model locally with GPUs for faster generation.", | |
| examples=examples, | |
| allow_flagging='never', | |
| cache_examples=False, | |
| theme="default").launch(enable_queue=True, debug=True) |