Spaces:
Paused
Paused
ffreemt
commited on
Commit
·
dd9518b
1
Parent(s):
2027c04
Update mcp-searxng instead of DuckDuckGoSearchTool
Browse files- __pycache__/get_gemini_keys.cpython-312.pyc +0 -0
- __pycache__/get_model.cpython-312.pyc +0 -0
- __pycache__/openai_model.cpython-312.pyc +0 -0
- app.py +70 -39
- basic_agent.py +98 -73
- openai_model.py +7 -1
__pycache__/get_gemini_keys.cpython-312.pyc
CHANGED
|
Binary files a/__pycache__/get_gemini_keys.cpython-312.pyc and b/__pycache__/get_gemini_keys.cpython-312.pyc differ
|
|
|
__pycache__/get_model.cpython-312.pyc
CHANGED
|
Binary files a/__pycache__/get_model.cpython-312.pyc and b/__pycache__/get_model.cpython-312.pyc differ
|
|
|
__pycache__/openai_model.cpython-312.pyc
CHANGED
|
Binary files a/__pycache__/openai_model.cpython-312.pyc and b/__pycache__/openai_model.cpython-312.pyc differ
|
|
|
app.py
CHANGED
|
@@ -11,10 +11,11 @@ from mcp import StdioServerParameters
|
|
| 11 |
from smolagents import DuckDuckGoSearchTool, FinalAnswerTool, Tool, ToolCollection, VisitWebpageTool
|
| 12 |
from ycecream import y
|
| 13 |
|
| 14 |
-
from basic_agent import BasicAgent
|
| 15 |
from get_model import get_model
|
|
|
|
| 16 |
|
| 17 |
-
y.configure(sln=
|
| 18 |
print = rich.get_console().print
|
| 19 |
|
| 20 |
# (Keep Constants as is)
|
|
@@ -55,24 +56,6 @@ def run_and_submit_all(profile: gr.OAuthProfile | None):
|
|
| 55 |
questions_url = f"{api_url}/questions" # https://agents-course-unit4-scoring.hf.space/questions
|
| 56 |
submit_url = f"{api_url}/submit"
|
| 57 |
|
| 58 |
-
# 1. Instantiate Agent ( modify this part to create your agent)
|
| 59 |
-
try:
|
| 60 |
-
agent = BasicAgent(
|
| 61 |
-
# model=get_model(cat="gemini"),
|
| 62 |
-
model=get_model(cat="llama"),
|
| 63 |
-
tools=[
|
| 64 |
-
DuckDuckGoSearchTool(),
|
| 65 |
-
VisitWebpageTool(),
|
| 66 |
-
# FinalAnswerTool(),
|
| 67 |
-
],
|
| 68 |
-
)
|
| 69 |
-
except Exception as e:
|
| 70 |
-
print(f"Error instantiating agent: {e}")
|
| 71 |
-
return f"Error initializing agent: {e}", None
|
| 72 |
-
# In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
|
| 73 |
-
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
| 74 |
-
print(agent_code)
|
| 75 |
-
|
| 76 |
# 2. Fetch Questions
|
| 77 |
print(f"Fetching questions from: {questions_url}")
|
| 78 |
try:
|
|
@@ -95,27 +78,75 @@ def run_and_submit_all(profile: gr.OAuthProfile | None):
|
|
| 95 |
print(f"An unexpected error occurred fetching questions: {e}")
|
| 96 |
return f"An unexpected error occurred fetching questions: {e}", None
|
| 97 |
|
| 98 |
-
#
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 108 |
try:
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 112 |
except Exception as e:
|
| 113 |
-
print(f"Error
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
print(
|
| 118 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 119 |
|
| 120 |
# 4. Prepare Submission
|
| 121 |
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
|
|
|
|
| 11 |
from smolagents import DuckDuckGoSearchTool, FinalAnswerTool, Tool, ToolCollection, VisitWebpageTool
|
| 12 |
from ycecream import y
|
| 13 |
|
| 14 |
+
from basic_agent import BasicAgent, WikipediaSearchTool
|
| 15 |
from get_model import get_model
|
| 16 |
+
from openai_model import openai_model
|
| 17 |
|
| 18 |
+
y.configure(sln=0)
|
| 19 |
print = rich.get_console().print
|
| 20 |
|
| 21 |
# (Keep Constants as is)
|
|
|
|
| 56 |
questions_url = f"{api_url}/questions" # https://agents-course-unit4-scoring.hf.space/questions
|
| 57 |
submit_url = f"{api_url}/submit"
|
| 58 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 59 |
# 2. Fetch Questions
|
| 60 |
print(f"Fetching questions from: {questions_url}")
|
| 61 |
try:
|
|
|
|
| 78 |
print(f"An unexpected error occurred fetching questions: {e}")
|
| 79 |
return f"An unexpected error occurred fetching questions: {e}", None
|
| 80 |
|
| 81 |
+
# Prepare model and mcp_params
|
| 82 |
+
model = openai_model() # defautl llama4 scout
|
| 83 |
+
|
| 84 |
+
# messages = [{'role': 'user', 'content': 'Say this is a test.'}]
|
| 85 |
+
# print(model(messages))
|
| 86 |
+
|
| 87 |
+
# raise SystemExit("By intention")
|
| 88 |
+
|
| 89 |
+
mcp_searxng_params = StdioServerParameters(
|
| 90 |
+
**{
|
| 91 |
+
"command": "npx",
|
| 92 |
+
"args": [
|
| 93 |
+
"-y",
|
| 94 |
+
"mcp-searxng"
|
| 95 |
+
],
|
| 96 |
+
"env": {
|
| 97 |
+
"SEARXNG_URL": "https://searx.dattw.eu.org"
|
| 98 |
+
}
|
| 99 |
+
}
|
| 100 |
+
)
|
| 101 |
+
|
| 102 |
+
# with ToolCollection.from_mcp(mcp_searxng_params, trust_remote_code=True) as searxng_tool_collection, ToolCollection.from_mcp(mcp_markitdown_params, trust_remote_code=True) as markitdown_tools:
|
| 103 |
+
with ToolCollection.from_mcp(mcp_searxng_params, trust_remote_code=True) as searxng_tool_collection:
|
| 104 |
+
# 1. Instantiate Agent ( modify this part to create your agent)
|
| 105 |
try:
|
| 106 |
+
agent = BasicAgent(
|
| 107 |
+
# model=get_model(cat="gemini"),
|
| 108 |
+
# model=get_model(cat="llama"),
|
| 109 |
+
model=model,
|
| 110 |
+
tools=[
|
| 111 |
+
*searxng_tool_collection.tools,
|
| 112 |
+
# DuckDuckGoSearchTool(),
|
| 113 |
+
VisitWebpageTool(),
|
| 114 |
+
WikipediaSearchTool(),
|
| 115 |
+
FinalAnswerTool(),
|
| 116 |
+
],
|
| 117 |
+
verbosity_level=1,
|
| 118 |
+
)
|
| 119 |
+
agent.agent.visualize()
|
| 120 |
except Exception as e:
|
| 121 |
+
print(f"Error instantiating agent: {e}")
|
| 122 |
+
return f"Error initializing agent: {e}", None
|
| 123 |
+
# In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
|
| 124 |
+
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
| 125 |
+
print(agent_code)
|
| 126 |
+
|
| 127 |
+
# 3. Run your Agent
|
| 128 |
+
results_log = []
|
| 129 |
+
answers_payload = []
|
| 130 |
+
print(f"Running agent on {len(questions_data)} questions...")
|
| 131 |
+
for item in questions_data:
|
| 132 |
+
task_id = item.get("task_id")
|
| 133 |
+
question_text = item.get("question")
|
| 134 |
+
if not task_id or question_text is None:
|
| 135 |
+
print(f"Skipping item with missing task_id or question: {item}")
|
| 136 |
+
continue
|
| 137 |
+
try:
|
| 138 |
+
submitted_answer = agent(question_text)
|
| 139 |
+
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
| 140 |
+
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
|
| 141 |
+
except Exception as e:
|
| 142 |
+
print(f"Error running agent on task {task_id}: {e}")
|
| 143 |
+
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
|
| 144 |
+
|
| 145 |
+
if not answers_payload:
|
| 146 |
+
print("Agent did not produce any answers to submit.")
|
| 147 |
+
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
| 148 |
+
|
| 149 |
+
agent.agent.visualize()
|
| 150 |
|
| 151 |
# 4. Prepare Submission
|
| 152 |
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
|
basic_agent.py
CHANGED
|
@@ -11,7 +11,8 @@ import rich
|
|
| 11 |
import smolagents
|
| 12 |
import wikipediaapi
|
| 13 |
from loguru import logger
|
| 14 |
-
from
|
|
|
|
| 15 |
from smolagents import InferenceClientModel as HfApiModel
|
| 16 |
|
| 17 |
from get_model import get_model
|
|
@@ -78,6 +79,8 @@ class BasicAgent:
|
|
| 78 |
model: smolagents.models.Model = HfApiModel()
|
| 79 |
tools: list = field(default_factory=lambda: [])
|
| 80 |
verbosity_level: int = 0
|
|
|
|
|
|
|
| 81 |
# def __init__(self):
|
| 82 |
def __post_init__(self):
|
| 83 |
"""Run post_init."""
|
|
@@ -86,8 +89,8 @@ class BasicAgent:
|
|
| 86 |
tools=self.tools,
|
| 87 |
model=self.model,
|
| 88 |
verbosity_level=self.verbosity_level,
|
| 89 |
-
additional_authorized_imports=
|
| 90 |
-
planning_interval=
|
| 91 |
)
|
| 92 |
|
| 93 |
def get_answer(self, question: str):
|
|
@@ -122,53 +125,14 @@ def main():
|
|
| 122 |
|
| 123 |
space_id = f"{username}/{repo_name}"
|
| 124 |
|
| 125 |
-
# model = get_model(cat="gemini")
|
| 126 |
-
|
| 127 |
-
_ = (
|
| 128 |
-
"gemini-2.5-flash-preview-04-17",
|
| 129 |
-
# "https://api-proxy.me/gemini/v1beta",
|
| 130 |
-
"https://generativelanguage.googleapis.com/v1beta",
|
| 131 |
-
os.getenv("GEMINI_API_KEY"),
|
| 132 |
-
)
|
| 133 |
-
|
| 134 |
-
_ = (
|
| 135 |
-
"grok-3-beta",
|
| 136 |
-
"https://api.x.ai/v1",
|
| 137 |
-
os.getenv("XAI_API_KEY"),
|
| 138 |
-
)
|
| 139 |
-
|
| 140 |
-
# model = litellm_model(*_)
|
| 141 |
-
model = openai_model(*_)
|
| 142 |
-
|
| 143 |
-
messages = [{'role': 'user', 'content': 'Say this is a test.'}]
|
| 144 |
-
print(model(messages))
|
| 145 |
-
# raise SystemExit("By intention")
|
| 146 |
-
|
| 147 |
-
# 1. Instantiate Agent ( modify this part to create your agent)
|
| 148 |
-
try:
|
| 149 |
-
# agent = BasicAgent()
|
| 150 |
-
agent = BasicAgent(
|
| 151 |
-
model=model,
|
| 152 |
-
tools=[
|
| 153 |
-
DuckDuckGoSearchTool(),
|
| 154 |
-
VisitWebpageTool(),
|
| 155 |
-
WikipediaSearchTool(),
|
| 156 |
-
FinalAnswerTool(),
|
| 157 |
-
]
|
| 158 |
-
)
|
| 159 |
-
agent.agent.visualize()
|
| 160 |
-
except Exception as e:
|
| 161 |
-
print(f"Error instantiating agent: {e}")
|
| 162 |
-
return f"Error initializing agent: {e}", None
|
| 163 |
-
|
| 164 |
# In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
|
| 165 |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
| 166 |
print(agent_code)
|
| 167 |
|
| 168 |
-
# 2. Fetch Questions
|
| 169 |
print(f"Fetching questions from: {questions_url}")
|
| 170 |
try:
|
| 171 |
-
response = requests.get(questions_url, timeout=
|
| 172 |
response.raise_for_status()
|
| 173 |
questions_data = response.json()
|
| 174 |
if not questions_data:
|
|
@@ -186,40 +150,101 @@ def main():
|
|
| 186 |
print(f"An unexpected error occurred fetching questions: {e}")
|
| 187 |
return f"An unexpected error occurred fetching questions: {e}", None
|
| 188 |
|
| 189 |
-
#
|
| 190 |
-
results_log = []
|
| 191 |
-
answers_payload = []
|
| 192 |
|
| 193 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 194 |
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
print(f"Error running agent on task {task_id}: {e}")
|
| 209 |
-
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
|
| 210 |
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 214 |
|
| 215 |
-
#
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 220 |
|
| 221 |
-
|
| 222 |
-
|
| 223 |
|
| 224 |
if __name__ == "__main__":
|
| 225 |
main()
|
|
|
|
| 11 |
import smolagents
|
| 12 |
import wikipediaapi
|
| 13 |
from loguru import logger
|
| 14 |
+
from mcp import StdioServerParameters
|
| 15 |
+
from smolagents import CodeAgent, DuckDuckGoSearchTool, FinalAnswerTool, Tool, ToolCollection, VisitWebpageTool
|
| 16 |
from smolagents import InferenceClientModel as HfApiModel
|
| 17 |
|
| 18 |
from get_model import get_model
|
|
|
|
| 79 |
model: smolagents.models.Model = HfApiModel()
|
| 80 |
tools: list = field(default_factory=lambda: [])
|
| 81 |
verbosity_level: int = 0
|
| 82 |
+
additional_authorized_imports: list = field(default_factory=lambda: AUTHORIZED_IMPORTS)
|
| 83 |
+
planning_interval: int = 4
|
| 84 |
# def __init__(self):
|
| 85 |
def __post_init__(self):
|
| 86 |
"""Run post_init."""
|
|
|
|
| 89 |
tools=self.tools,
|
| 90 |
model=self.model,
|
| 91 |
verbosity_level=self.verbosity_level,
|
| 92 |
+
additional_authorized_imports=self.additional_authorized_imports,
|
| 93 |
+
planning_interval=self.planning_interval,
|
| 94 |
)
|
| 95 |
|
| 96 |
def get_answer(self, question: str):
|
|
|
|
| 125 |
|
| 126 |
space_id = f"{username}/{repo_name}"
|
| 127 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 128 |
# In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
|
| 129 |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
| 130 |
print(agent_code)
|
| 131 |
|
| 132 |
+
# 2. Fetch Questions: fetch before openai_model() which my set proxy
|
| 133 |
print(f"Fetching questions from: {questions_url}")
|
| 134 |
try:
|
| 135 |
+
response = requests.get(questions_url, timeout=120)
|
| 136 |
response.raise_for_status()
|
| 137 |
questions_data = response.json()
|
| 138 |
if not questions_data:
|
|
|
|
| 150 |
print(f"An unexpected error occurred fetching questions: {e}")
|
| 151 |
return f"An unexpected error occurred fetching questions: {e}", None
|
| 152 |
|
| 153 |
+
# model = get_model(cat="gemini")
|
|
|
|
|
|
|
| 154 |
|
| 155 |
+
_ = (
|
| 156 |
+
"gemini-2.5-flash-preview-04-17",
|
| 157 |
+
# "https://api-proxy.me/gemini/v1beta",
|
| 158 |
+
"https://generativelanguage.googleapis.com/v1beta",
|
| 159 |
+
os.getenv("GEMINI_API_KEY"),
|
| 160 |
+
)
|
| 161 |
|
| 162 |
+
_ = (
|
| 163 |
+
"grok-3-beta",
|
| 164 |
+
"https://api.x.ai/v1",
|
| 165 |
+
os.getenv("XAI_API_KEY"),
|
| 166 |
+
)
|
| 167 |
+
|
| 168 |
+
# model = litellm_model(*_)
|
| 169 |
+
# model = get_model()
|
| 170 |
+
|
| 171 |
+
model = openai_model() # defautl llama4 scout
|
| 172 |
+
|
| 173 |
+
# messages = [{'role': 'user', 'content': 'Say this is a test.'}]
|
| 174 |
+
# print(model(messages))
|
|
|
|
|
|
|
| 175 |
|
| 176 |
+
# raise SystemExit("By intention")
|
| 177 |
+
|
| 178 |
+
mcp_searxng_params = StdioServerParameters(
|
| 179 |
+
**{
|
| 180 |
+
"command": "npx",
|
| 181 |
+
"args": [
|
| 182 |
+
"-y",
|
| 183 |
+
"mcp-searxng"
|
| 184 |
+
],
|
| 185 |
+
"env": {
|
| 186 |
+
"SEARXNG_URL": "https://searx.dattw.eu.org"
|
| 187 |
+
}
|
| 188 |
+
}
|
| 189 |
+
)
|
| 190 |
|
| 191 |
+
# with ToolCollection.from_mcp(mcp_searxng_params, trust_remote_code=True) as searxng_tool_collection, ToolCollection.from_mcp(mcp_markitdown_params, trust_remote_code=True) as markitdown_tools:
|
| 192 |
+
with ToolCollection.from_mcp(mcp_searxng_params, trust_remote_code=True) as searxng_tool_collection:
|
| 193 |
+
# 1. Instantiate Agent ( modify this part to create your agent)
|
| 194 |
+
try:
|
| 195 |
+
# agent = BasicAgent()
|
| 196 |
+
agent = BasicAgent(
|
| 197 |
+
model=model,
|
| 198 |
+
tools=[
|
| 199 |
+
*searxng_tool_collection.tools,
|
| 200 |
+
# DuckDuckGoSearchTool(),
|
| 201 |
+
VisitWebpageTool(),
|
| 202 |
+
WikipediaSearchTool(),
|
| 203 |
+
FinalAnswerTool(),
|
| 204 |
+
],
|
| 205 |
+
verbosity_level=1,
|
| 206 |
+
)
|
| 207 |
+
agent.agent.visualize()
|
| 208 |
+
except Exception as e:
|
| 209 |
+
print(f"Error instantiating agent: {e}")
|
| 210 |
+
return f"Error initializing agent: {e}", None
|
| 211 |
+
|
| 212 |
+
|
| 213 |
+
# 3. Run your Agent
|
| 214 |
+
results_log = []
|
| 215 |
+
answers_payload = []
|
| 216 |
+
|
| 217 |
+
print(f"Running agent on {len(questions_data)} questions...")
|
| 218 |
+
|
| 219 |
+
# for item in questions_data:
|
| 220 |
+
# for item in questions_data[-1:]:
|
| 221 |
+
# for item in questions_data[14:15]:
|
| 222 |
+
for item in questions_data[-6:]:
|
| 223 |
+
task_id = item.get("task_id")
|
| 224 |
+
question_text = item.get("question")
|
| 225 |
+
if not task_id or question_text is None:
|
| 226 |
+
print(f"Skipping item with missing task_id or question: {item}")
|
| 227 |
+
continue
|
| 228 |
+
try:
|
| 229 |
+
submitted_answer = agent(question_text)
|
| 230 |
+
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
| 231 |
+
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
|
| 232 |
+
except Exception as e:
|
| 233 |
+
print(f"Error running agent on task {task_id}: {e}")
|
| 234 |
+
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
|
| 235 |
+
|
| 236 |
+
if not answers_payload:
|
| 237 |
+
print("Agent did not produce any answers to submit.")
|
| 238 |
+
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
| 239 |
+
|
| 240 |
+
# 4. Prepare Submission
|
| 241 |
+
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload} # noqa
|
| 242 |
+
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
|
| 243 |
+
print(status_update)
|
| 244 |
+
print(answers_payload)
|
| 245 |
|
| 246 |
+
agent.agent.visualize()
|
| 247 |
+
return None, None
|
| 248 |
|
| 249 |
if __name__ == "__main__":
|
| 250 |
main()
|
openai_model.py
CHANGED
|
@@ -26,7 +26,12 @@ def openai_model(
|
|
| 26 |
|
| 27 |
# default llama4
|
| 28 |
api_base = api_base or "https://api.llama.com/compat/v1"
|
|
|
|
| 29 |
api_key = api_key or os.getenv("LLAMA_API_KEY")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
|
| 31 |
# "Llama-4-Maverick-17B-128E-Instruct-FP8"
|
| 32 |
# "Llama-4-Scout-17B-16E-Instruct-FP8"
|
|
@@ -43,10 +48,11 @@ def openai_model(
|
|
| 43 |
def main():
|
| 44 |
messages = [{'role': 'user', 'content': 'Say this is a test.'}]
|
| 45 |
logger.debug(sys.argv)
|
|
|
|
| 46 |
if not sys.argv[1:]:
|
|
|
|
| 47 |
model = openai_model()
|
| 48 |
logger.debug(model(messages))
|
| 49 |
-
return
|
| 50 |
|
| 51 |
if len(sys.argv[1:]) < 3:
|
| 52 |
raise SystemExit("Provide at least three args (model_id, api_base, api_key)")
|
|
|
|
| 26 |
|
| 27 |
# default llama4
|
| 28 |
api_base = api_base or "https://api.llama.com/compat/v1"
|
| 29 |
+
|
| 30 |
api_key = api_key or os.getenv("LLAMA_API_KEY")
|
| 31 |
+
if isinstance(api_key, str):
|
| 32 |
+
# LLAMA_API_KEY contains | and in win10 need to assign env var with ""
|
| 33 |
+
api_key = api_key.strip('"')
|
| 34 |
+
assert api_key, "LLAMA_API_KEY not set, set it and try again"
|
| 35 |
|
| 36 |
# "Llama-4-Maverick-17B-128E-Instruct-FP8"
|
| 37 |
# "Llama-4-Scout-17B-16E-Instruct-FP8"
|
|
|
|
| 48 |
def main():
|
| 49 |
messages = [{'role': 'user', 'content': 'Say this is a test.'}]
|
| 50 |
logger.debug(sys.argv)
|
| 51 |
+
|
| 52 |
if not sys.argv[1:]:
|
| 53 |
+
logger.debug("default llama4 scout")
|
| 54 |
model = openai_model()
|
| 55 |
logger.debug(model(messages))
|
|
|
|
| 56 |
|
| 57 |
if len(sys.argv[1:]) < 3:
|
| 58 |
raise SystemExit("Provide at least three args (model_id, api_base, api_key)")
|