Spaces:
Sleeping
Sleeping
| """ | |
| cf https://huggingface.co/spaces/Nymbo/Qwen-2.5-72B-Instruct/blob/main/app.py | |
| https://huggingface.co/spaces/prithivMLmods/Llama-3.1-8B-Instruct/blob/main/app.py | |
| https://github.com/huggingface/huggingface-llama-recipes/blob/main/api_inference/inference-api.ipynb | |
| """ | |
| import os | |
| import time | |
| import gradio as gr | |
| from openai import OpenAI | |
| # from huggingface_hub import InferenceClient | |
| os.environ.update(TZ='Asia/Shanghai') | |
| time.tzset() | |
| # ACCESS_TOKEN = os.getenv("HF_TOKEN") | |
| # client = InferenceClient() | |
| # _ = """ | |
| client = OpenAI( | |
| base_url="https://api-inference.huggingface.co/v1/", | |
| # api_key=ACCESS_TOKEN, | |
| api_key=os.getenv("HF_TOKEN", 'na') | |
| ) | |
| # """ | |
| def respond( | |
| message, | |
| history: list[tuple[str, str]], | |
| system_message, | |
| max_tokens, | |
| temperature, | |
| top_p, | |
| ): | |
| messages = [{"role": "system", "content": system_message}] | |
| for val in history: | |
| if val[0]: | |
| messages.append({"role": "user", "content": val[0]}) | |
| if val[1]: | |
| messages.append({"role": "assistant", "content": val[1]}) | |
| messages.append({"role": "user", "content": message}) | |
| response = "" | |
| try: | |
| _ = client.chat.completions.create( | |
| model="Qwen/Qwen2.5-72B-Instruct", | |
| max_tokens=max_tokens, | |
| stream=True, | |
| temperature=temperature, | |
| top_p=top_p, | |
| messages=messages, | |
| ) | |
| for message in _: | |
| token = message.choices[0].delta.content | |
| response += token | |
| yield response | |
| except Exception as e: | |
| yield str(e) | |
| chatbot = gr.Chatbot(height=600) | |
| css = ''' | |
| .gradio-container{max-width: 1000px !important} | |
| h1{text-align:center} | |
| footer { | |
| visibility: hidden | |
| } | |
| ''' | |
| demo = gr.ChatInterface( | |
| respond, | |
| type='messages', | |
| # description='chatbox', | |
| additional_inputs=[ | |
| gr.Textbox(value="", label="System message"), | |
| # gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
| gr.Slider(minimum=1, maximum=32768 // 2 - 500, value=32768 // 2 - 500, step=1, label="Max new tokens"), | |
| gr.Slider(minimum=0.1, maximum=4.0, value=0.3, step=0.1, label="Temperature"), | |
| gr.Slider( | |
| minimum=0.1, | |
| maximum=1.0, | |
| value=0.95, | |
| step=0.05, | |
| label="Top-P", | |
| ), | |
| ], | |
| fill_height=True, | |
| chatbot=chatbot, | |
| css=css, | |
| # examples=[{"role": "user", "content": "Define 'deep learning' in once sentence."}], | |
| # retry_btn="Retry", # unexpected keyword argument 'retry_btn' | |
| # undo_btn="Undo", | |
| # clear_btn="Clear", | |
| # stop_btn='Cancel', | |
| # theme="allenai/gradio-theme", | |
| # theme="Nymbo/Alyx_Theme", | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() # ssr=False |