Spaces:
Sleeping
Sleeping
File size: 9,568 Bytes
223ef32 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 |
#!/usr/bin/env python3
"""
Streamlit Web App for Cybersecurity Agent Pipeline
A simple web interface for uploading log files and running the cybersecurity analysis pipeline
with different LLM models.
"""
import os
import sys
import tempfile
import shutil
import streamlit as st
from pathlib import Path
from typing import Dict, Any, Optional
from src.full_pipeline.simple_pipeline import analyze_log_file
from dotenv import load_dotenv
from huggingface_hub import login as huggingface_login
load_dotenv()
def get_model_providers() -> Dict[str, Dict[str, str]]:
"""Get available model providers and their models."""
return {
"Google GenAI": {
"gemini-2.0-flash": "google_genai:gemini-2.0-flash",
"gemini-2.0-flash-lite": "google_genai:gemini-2.0-flash-lite",
"gemini-2.5-flash-lite": "google_genai:gemini-2.5-flash-lite",
},
"Groq": {
"openai/gpt-oss-120b": "groq:openai/gpt-oss-120b",
"moonshotai/kimi-k2-instruct-0905": "groq:moonshotai/kimi-k2-instruct-0905",
},
"OpenAI": {"gpt-4o": "openai:gpt-4o", "gpt-4.1": "openai:gpt-4.1"},
}
def get_api_key_help() -> Dict[str, str]:
"""Get API key help information for each provider."""
return {
"Google GenAI": "https://aistudio.google.com/app/apikey",
"Groq": "https://console.groq.com/keys",
"OpenAI": "https://platform.openai.com/api-keys",
}
def setup_temp_directories(temp_dir: str) -> Dict[str, str]:
"""Setup temporary directories for the pipeline."""
log_files_dir = os.path.join(temp_dir, "log_files")
analysis_dir = os.path.join(temp_dir, "analysis")
final_response_dir = os.path.join(temp_dir, "final_response")
os.makedirs(log_files_dir, exist_ok=True)
os.makedirs(analysis_dir, exist_ok=True)
os.makedirs(final_response_dir, exist_ok=True)
return {
"log_files": log_files_dir,
"analysis": analysis_dir,
"final_response": final_response_dir,
}
def save_uploaded_file(uploaded_file, temp_dir: str) -> str:
"""Save uploaded file to temporary directory."""
log_files_dir = os.path.join(temp_dir, "log_files")
file_path = os.path.join(log_files_dir, uploaded_file.name)
with open(file_path, "wb") as f:
f.write(uploaded_file.getbuffer())
return file_path
def run_analysis(
log_file_path: str,
model_name: str,
query: str,
temp_dirs: Dict[str, str],
api_key: str,
provider: str,
) -> Dict[str, Any]:
"""Run the cybersecurity analysis pipeline."""
# Set environment variable for API key
if provider == "Google GenAI":
os.environ["GOOGLE_API_KEY"] = api_key
elif provider == "Groq":
os.environ["GROQ_API_KEY"] = api_key
elif provider == "OpenAI":
os.environ["OPENAI_API_KEY"] = api_key
try:
# Run the analysis pipeline
result = analyze_log_file(
log_file=log_file_path,
query=query,
tactic=None,
model_name=model_name,
temperature=0.1,
log_agent_output_dir=temp_dirs["analysis"],
response_agent_output_dir=temp_dirs["final_response"],
)
return {"success": True, "result": result}
except Exception as e:
return {"success": False, "error": str(e)}
def main():
"""Main Streamlit app."""
if os.getenv("HF_TOKEN"):
huggingface_login(token=os.getenv("HF_TOKEN"))
st.set_page_config(
page_title="Cybersecurity Agent Pipeline", page_icon="🛡️", layout="wide"
)
st.title("Cybersecurity Agent Pipeline")
st.markdown(
"Upload a log file and analyze it using advanced LLM-based cybersecurity agents."
)
# Sidebar for configuration
with st.sidebar:
st.header("Configuration")
# Model selection
providers = get_model_providers()
selected_provider = st.selectbox(
"Select Model Provider", list(providers.keys())
)
available_models = providers[selected_provider]
selected_model_display = st.selectbox(
"Select Model", list(available_models.keys())
)
selected_model = available_models[selected_model_display]
# API Key input with help
st.subheader("API Key")
api_key_help = get_api_key_help()
with st.expander("How to get API key", expanded=False):
st.markdown(f"**{selected_provider}**:")
st.markdown(f"[Get API Key]({api_key_help[selected_provider]})")
api_key = st.text_input(
f"Enter {selected_provider} API Key",
type="password",
help=f"Your {selected_provider} API key",
)
# Additional query
st.subheader("Additional Context")
user_query = st.text_area(
"Optional Query",
placeholder="e.g., 'Focus on credential access attacks'",
help="Provide additional context or specific focus areas for the analysis",
)
# Main content area
col1, col2 = st.columns([2, 1])
with col1:
st.header("Upload Log File")
uploaded_file = st.file_uploader(
"Choose a JSON log file",
type=["json"],
help="Upload a JSON log file from the Mordor dataset or similar security logs",
)
with col2:
st.header("Analysis Status")
if uploaded_file is not None:
st.success(f"File uploaded: {uploaded_file.name}")
st.info(f"Size: {uploaded_file.size:,} bytes")
else:
st.warning("Please upload a log file")
# Run analysis button
if st.button(
"Run Analysis", type="primary", disabled=not (uploaded_file and api_key)
):
if not uploaded_file:
st.error("Please upload a log file first.")
return
if not api_key:
st.error("Please enter your API key.")
return
# Create temporary directory
temp_dir = tempfile.mkdtemp(prefix="cyber_agent_")
try:
# Setup directories
temp_dirs = setup_temp_directories(temp_dir)
# Save uploaded file
log_file_path = save_uploaded_file(uploaded_file, temp_dir)
# Show progress
progress_bar = st.progress(0)
status_text = st.empty()
status_text.text("Initializing analysis...")
progress_bar.progress(10)
# Run analysis
status_text.text("Running cybersecurity analysis...")
progress_bar.progress(50)
analysis_result = run_analysis(
log_file_path=log_file_path,
model_name=selected_model,
query=user_query,
temp_dirs=temp_dirs,
api_key=api_key,
provider=selected_provider,
)
progress_bar.progress(90)
status_text.text("Finalizing results...")
if analysis_result["success"]:
progress_bar.progress(100)
status_text.text("Analysis completed successfully!")
# Display results
st.header("Analysis Results")
result = analysis_result["result"]
# Show key metrics
col1, col2, col3 = st.columns(3)
with col1:
assessment = result.get("log_analysis_result", {}).get(
"overall_assessment", "Unknown"
)
st.metric("Overall Assessment", assessment)
with col2:
abnormal_events = result.get("log_analysis_result", {}).get(
"abnormal_events", []
)
st.metric("Abnormal Events", len(abnormal_events))
with col3:
execution_time = result.get("execution_time", "N/A")
st.metric(
"Execution Time",
(
f"{execution_time:.2f}s"
if isinstance(execution_time, (int, float))
else execution_time
),
)
# Show markdown report
markdown_report = result.get("markdown_report", "")
if markdown_report:
st.header("Detailed Report")
st.markdown(markdown_report)
else:
st.warning("No detailed report generated.")
else:
st.error(f"Analysis failed: {analysis_result['error']}")
st.exception(analysis_result["error"])
finally:
# Cleanup temporary directory
try:
shutil.rmtree(temp_dir)
except Exception as e:
st.warning(f"Could not clean up temporary directory: {e}")
# Footer
st.markdown("---")
st.markdown(
"**Cybersecurity Agent Pipeline** - Powered by LangGraph and LangChain | "
"Built for educational purposes demonstrating LLM-based multi-agent systems"
)
if __name__ == "__main__":
main()
|