File size: 39,172 Bytes
223ef32
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
"""
CTI Bench Evaluation Script for Cybersecurity Retrieval System

This script evaluates the retrieval supervisor system against the CTI Bench dataset,
including both CTI-ATE (attack technique extraction) and CTI-MCQ (multiple choice questions).
"""

import os
import sys
import pandas as pd
import re
import json
import csv
from pathlib import Path
from typing import Dict, List, Tuple, Any, Optional
from datetime import datetime
from sklearn.metrics import f1_score, precision_score, recall_score, accuracy_score
import numpy as np

# Import your supervisor
from src.agents.retrieval_supervisor.supervisor import RetrievalSupervisor


class CTIBenchEvaluator:
    """Evaluator for CTI Bench dataset using the Retrieval Supervisor."""

    def __init__(
        self,
        supervisor: Optional[RetrievalSupervisor],
        dataset_dir: str = "cti_bench/datasets",
        output_dir: str = "cti_bench/eval_output",
    ):
        """
        Initialize the CTI Bench evaluator.

        Args:
            supervisor: RetrievalSupervisor instance (can be None for CSV processing)
            dataset_dir: Directory containing CTI Bench datasets
            output_dir: Directory to save evaluation results
        """
        self.supervisor = supervisor
        self.dataset_dir = Path(dataset_dir)
        self.output_dir = Path(output_dir)
        self.output_dir.mkdir(parents=True, exist_ok=True)

        # Templates for queries
        self.ate_query_template = """You are a cybersecurity expert specializing in cyber threat intelligence. 
Extract all MITRE Enterprise attack patterns from the following text and map them to their corresponding MITRE technique IDs. 
Provide reasoning for each identification. 
Ensure the final line contains only the IDs for the main techniques, separated by commas, excluding any subtechnique IDs.

Example of the final line: T1071, T1560, T1547

Text:
{attack_description}
"""

    def load_datasets(self) -> Tuple[pd.DataFrame, pd.DataFrame]:
        """Load CTI-ATE and CTI-MCQ datasets."""
        try:
            # Load CTI-ATE dataset
            ate_path = self.dataset_dir / "cti-ate.tsv"
            ate_df = pd.read_csv(ate_path, sep="\t")
            print(f"Loaded CTI-ATE dataset: {len(ate_df)} samples")

            # Load CTI-MCQ dataset
            mcq_path = self.dataset_dir / "cti-mcq.tsv"
            mcq_df = pd.read_csv(mcq_path, sep="\t")
            print(f"Loaded CTI-MCQ dataset: {len(mcq_df)} samples")

            return ate_df, mcq_df

        except Exception as e:
            print(f"Error loading datasets: {e}")
            raise

    def filter_dataset(self, df: pd.DataFrame, dataset_type: str) -> pd.DataFrame:
        """Filter dataset according to requirements."""
        if dataset_type == "ate":
            # Filter ATE: only Enterprise platform
            filtered_df = df[df["Platform"] == "Enterprise"].copy()
            print(
                f"CTI-ATE filtered to Enterprise platform: {len(filtered_df)} samples"
            )
        elif dataset_type == "mcq":
            # Filter MCQ: only samples with "techniques" in URL
            filtered_df = df[df["URL"].str.contains("techniques", na=False)].copy()
            print(f"CTI-MCQ filtered to technique URLs: {len(filtered_df)} samples")
        else:
            raise ValueError(f"Invalid dataset type: {dataset_type}")

        return filtered_df

    def extract_technique_ids_from_response(self, response: str) -> List[str]:
        """
        Extract MITRE technique IDs from the response text.
        Simplified version: only checks the final line.

        Args:
            response: Response text from the supervisor

        Returns:
            List of extracted technique IDs, or empty list if not successful
        """
        # Get the final line
        lines = response.strip().split("\n")
        if not lines:
            return []

        final_line = lines[-1].strip()
        if not final_line:
            return []

        # Pattern to match MITRE technique IDs (T followed by 4 digits, optionally followed by .XXX)
        technique_pattern = r"\bT\d{4}(?:\.\d{3})?\b"

        # Check if final line contains only technique IDs, commas, and spaces
        techniques_in_line = re.findall(technique_pattern, final_line)
        if not techniques_in_line:
            return []

        # Check if the line is only technique IDs, commas, and spaces
        clean_line = re.sub(r"[T\d.,\s]", "", final_line)
        if len(clean_line) > 0:
            return []  # Not successful - line contains other characters

        # Return all technique IDs from the final line (excluding subtechniques)
        return [t for t in techniques_in_line if "." not in t]

    def extract_mcq_answer_from_response(self, response: str) -> str:
        """
        Extract the final answer (A, B, C, or D) from MCQ response.

        Args:
            response: Response text from the supervisor

        Returns:
            Extracted answer letter or empty string if not found
        """
        # Look for single letter answers at the end of lines
        lines = response.strip().split("\n")

        # Check the last few lines for a single letter answer
        for line in reversed(lines[-3:]):
            line = line.strip()
            if line in ["A", "B", "C", "D"]:
                return line

            # Check for patterns like "Answer: A" or "The answer is B"
            match = re.search(r"\b([ABCD])\b(?:\s*[.)]?)\s*$", line)
            if match:
                return match.group(1)

        # Fallback: search the entire response for answer patterns
        answer_patterns = [
            r"(?:answer|choice|option).*?([ABCD])",
            r"\b([ABCD])\b(?:\s*[.)]?)\s*$",
            r"^([ABCD])$",
        ]

        for pattern in answer_patterns:
            matches = re.findall(pattern, response, re.IGNORECASE | re.MULTILINE)
            if matches:
                return matches[-1].upper()

        return ""  # No answer found

    def evaluate_ate_dataset(self, ate_df: pd.DataFrame) -> List[Dict[str, Any]]:
        """
        Evaluate the CTI-ATE dataset.

        Args:
            ate_df: Filtered CTI-ATE dataset

        Returns:
            List of evaluation results
        """
        results = []

        print(f"\n{'='*60}")
        print("EVALUATING CTI-ATE DATASET")
        print(f"{'='*60}")

        for i, (idx, row) in enumerate(ate_df.iterrows()):
            print(f"Processing ATE sample {i + 1}/{len(ate_df)}: {row['URL']}")

            # Retry up to 3 times for each sample
            max_retries = 3
            success = False
            result = None

            for attempt in range(max_retries):
                try:
                    print(f"  Attempt {attempt + 1}/{max_retries}")

                    # Create query from template
                    query = self.ate_query_template.format(
                        attack_description=row["Description"]
                    )

                    # Get response from supervisor
                    response = self.supervisor.invoke_direct_query(query, trace=False)

                    # Extract final message content from LangGraph result
                    if "messages" in response and response["messages"]:
                        # Get the last AI message from the conversation
                        last_message = None
                        for msg in reversed(response["messages"]):
                            try:
                                if (
                                    hasattr(msg, "content")
                                    and hasattr(msg, "type")
                                    and msg.type == "ai"
                                ):
                                    last_message = msg
                                    break
                            except (AttributeError, TypeError) as e:
                                # Handle cases where msg.type might be an int instead of string
                                print(f"  Warning: Error accessing message type: {e}")
                                continue

                        if last_message:
                            response_text = last_message.content
                        else:
                            # Fallback: get the last message regardless of type
                            try:
                                response_text = response["messages"][-1].content
                            except (AttributeError, TypeError) as e:
                                print(
                                    f"  Warning: Error accessing last message content: {e}"
                                )
                                response_text = str(response["messages"][-1])
                    else:
                        response_text = str(response)

                    # Extract technique IDs from response
                    predicted_techniques = self.extract_technique_ids_from_response(
                        response_text
                    )

                    # Parse ground truth
                    gt_techniques = [
                        t.strip() for t in row["GT"].split(",") if t.strip()
                    ]

                    # Check if extraction was successful
                    if len(predicted_techniques) > 0:
                        success = True
                        result = {
                            "url": row["URL"],
                            "description": row["Description"],
                            "ground_truth": gt_techniques,
                            "predicted": predicted_techniques,
                            "response_text": response_text,
                            "success": True,
                            "attempts": attempt + 1,
                        }
                        print(f"  GT: {gt_techniques}")
                        print(f"  Predicted: {predicted_techniques}")
                        print(f"  Success: {result['success']} (attempt {attempt + 1})")
                        break
                    else:
                        print(f"  No techniques extracted on attempt {attempt + 1}")
                        if attempt == max_retries - 1:
                            # Final attempt failed
                            result = {
                                "url": row["URL"],
                                "description": row["Description"],
                                "ground_truth": gt_techniques,
                                "predicted": [],
                                "response_text": response_text,
                                "success": False,
                                "attempts": max_retries,
                            }
                            print(f"  GT: {gt_techniques}")
                            print(f"  Predicted: {predicted_techniques}")
                            print(
                                f"  Success: {result['success']} (all attempts failed)"
                            )
                            print(f"  Response text: {response_text}")

                except Exception as e:
                    print(f"  Error processing sample (attempt {attempt + 1}): {e}")
                    if attempt == max_retries - 1:
                        # Final attempt failed
                        result = {
                            "url": row["URL"],
                            "description": row["Description"],
                            "ground_truth": [
                                t.strip() for t in row["GT"].split(",") if t.strip()
                            ],
                            "predicted": [],
                            "response_text": f"Error: {str(e)}",
                            "success": False,
                            "attempts": max_retries,
                        }
                        print(f"  Success: {result['success']} (all attempts failed)")
            results.append(result)

        return results

    def evaluate_mcq_dataset(self, mcq_df: pd.DataFrame) -> List[Dict[str, Any]]:
        """
        Evaluate the CTI-MCQ dataset.

        Args:
            mcq_df: Filtered CTI-MCQ dataset

        Returns:
            List of evaluation results
        """
        results = []

        print(f"\n{'='*60}")
        print("EVALUATING CTI-MCQ DATASET")
        print(f"{'='*60}")

        for i, (idx, row) in enumerate(mcq_df.iterrows()):
            print(f"Processing MCQ sample {i + 1}/{len(mcq_df)}: {row['URL']}")

            try:
                # Use the provided prompt
                query = row["Prompt"]

                # Get response from supervisor
                response = self.supervisor.invoke_direct_query(query, trace=False)

                # Extract final message content from LangGraph result
                if "messages" in response and response["messages"]:
                    # Get the last AI message from the conversation
                    last_message = None
                    for msg in reversed(response["messages"]):
                        try:
                            if (
                                hasattr(msg, "content")
                                and hasattr(msg, "type")
                                and msg.type == "ai"
                            ):
                                last_message = msg
                                break
                        except (AttributeError, TypeError) as e:
                            # Handle cases where msg.type might be an int instead of string
                            print(f"  Warning: Error accessing message type: {e}")
                            continue

                    if last_message:
                        response_text = last_message.content
                    else:
                        # Fallback: get the last message regardless of type
                        try:
                            response_text = response["messages"][-1].content
                        except (AttributeError, TypeError) as e:
                            print(
                                f"  Warning: Error accessing last message content: {e}"
                            )
                            response_text = str(response["messages"][-1])
                else:
                    response_text = str(response)

                # Extract answer from response
                predicted_answer = self.extract_mcq_answer_from_response(response_text)

                # Ground truth answer
                gt_answer = row["GT"].strip().upper()

                # Store result
                result = {
                    "url": row["URL"],
                    "prompt": row["Prompt"],
                    "ground_truth": gt_answer,
                    "predicted": predicted_answer,
                    "response_text": response_text,
                    "correct": predicted_answer == gt_answer,
                    "success": len(predicted_answer) > 0,
                }

                results.append(result)

                print(f"  GT: {gt_answer}")
                print(f"  Predicted: {predicted_answer}")
                print(f"  Correct: {result['correct']}")

            except Exception as e:
                print(f"  Error processing sample: {e}")
                result = {
                    "url": row["URL"],
                    "prompt": row["Prompt"],
                    "ground_truth": row["GT"].strip().upper(),
                    "predicted": "",
                    "response_text": f"Error: {str(e)}",
                    "correct": False,
                    "success": False,
                }
                results.append(result)

        return results

    def calculate_ate_metrics(self, results: List[Dict[str, Any]]) -> Dict[str, float]:
        """
        Calculate evaluation metrics for ATE dataset using sample-level metrics.

        Args:
            results: List of ATE evaluation results

        Returns:
            Dictionary of calculated metrics
        """
        if not results:
            return {}

        # Collect all unique technique IDs
        all_techniques = set()
        for result in results:
            all_techniques.update(result["ground_truth"])
            all_techniques.update(result["predicted"])

        all_techniques = sorted(list(all_techniques))

        # Sample-level metrics (macro = average across samples)
        sample_precisions = []
        sample_recalls = []
        sample_f1s = []

        for result in results:
            gt_set = set(result["ground_truth"])
            pred_set = set(result["predicted"])

            # Calculate precision, recall, and F1 for this sample
            if len(pred_set) == 0:
                precision = 0.0
            else:
                precision = len(gt_set.intersection(pred_set)) / len(pred_set)

            if len(gt_set) == 0:
                recall = 1.0 if len(pred_set) == 0 else 0.0
            else:
                recall = len(gt_set.intersection(pred_set)) / len(gt_set)

            if precision + recall == 0:
                f1 = 0.0
            else:
                f1 = 2 * (precision * recall) / (precision + recall)

            sample_precisions.append(precision)
            sample_recalls.append(recall)
            sample_f1s.append(f1)

        # Calculate macro-averaged metrics (average across samples)
        macro_precision = np.mean(sample_precisions)
        macro_recall = np.mean(sample_recalls)
        macro_f1 = np.mean(sample_f1s)

        # Sample-level micro metrics (aggregate TP, FP, FN across all samples)
        total_tp = 0
        total_fp = 0
        total_fn = 0

        for result in results:
            gt_set = set(result["ground_truth"])
            pred_set = set(result["predicted"])

            tp = len(gt_set.intersection(pred_set))
            fp = len(pred_set - gt_set)
            fn = len(gt_set - pred_set)

            total_tp += tp
            total_fp += fp
            total_fn += fn

        # Calculate micro-averaged metrics
        if total_tp + total_fp == 0:
            micro_precision = 0.0
        else:
            micro_precision = total_tp / (total_tp + total_fp)

        if total_tp + total_fn == 0:
            micro_recall = 0.0
        else:
            micro_recall = total_tp / (total_tp + total_fn)

        if micro_precision + micro_recall == 0:
            micro_f1 = 0.0
        else:
            micro_f1 = (
                2 * (micro_precision * micro_recall) / (micro_precision + micro_recall)
            )

        # Additional metrics
        exact_match = sum(
            1 for r in results if set(r["ground_truth"]) == set(r["predicted"])
        ) / len(results)
        success_rate = sum(1 for r in results if r["success"]) / len(results)

        return {
            # Primary metrics (sample-level)
            "macro_f1": macro_f1,
            "macro_precision": macro_precision,
            "macro_recall": macro_recall,
            "micro_f1": micro_f1,
            "micro_precision": micro_precision,
            "micro_recall": micro_recall,
            # Additional metrics
            "exact_match_ratio": exact_match,
            "success_rate": success_rate,
            "total_samples": len(results),
            "total_techniques": len(all_techniques),
        }

    def calculate_mcq_metrics(self, results: List[Dict[str, Any]]) -> Dict[str, float]:
        """
        Calculate evaluation metrics for MCQ dataset.

        Args:
            results: List of MCQ evaluation results

        Returns:
            Dictionary of calculated metrics
        """
        if not results:
            return {}

        # Prepare labels for sklearn metrics
        y_true = []
        y_pred = []

        for result in results:
            if result["success"]:  # Only include samples where we got a prediction
                y_true.append(result["ground_truth"])
                y_pred.append(result["predicted"])

        if not y_true:
            return {
                "accuracy": 0.0,
                "f1_macro": 0.0,
                "f1_micro": 0.0,
                "precision_macro": 0.0,
                "recall_macro": 0.0,
                "success_rate": 0.0,
                "total_samples": len(results),
                "answered_samples": 0,
            }

        # Calculate metrics
        accuracy = accuracy_score(y_true, y_pred)
        f1_macro = f1_score(y_true, y_pred, average="macro", zero_division=0)
        f1_micro = f1_score(y_true, y_pred, average="micro", zero_division=0)
        precision_macro = precision_score(
            y_true, y_pred, average="macro", zero_division=0
        )
        recall_macro = recall_score(y_true, y_pred, average="macro", zero_division=0)

        success_rate = sum(1 for r in results if r["success"]) / len(results)

        return {
            "accuracy": accuracy,
            "f1_macro": f1_macro,
            "f1_micro": f1_micro,
            "precision_macro": precision_macro,
            "recall_macro": recall_macro,
            "success_rate": success_rate,
            "total_samples": len(results),
            "answered_samples": len(y_true),
        }

    def save_results_to_csv(
        self, results: List[Dict[str, Any]], dataset_type: str, model_name: str = None
    ):
        """
        Save evaluation results to CSV file.

        Args:
            results: Evaluation results
            dataset_type: Type of dataset ("ate" or "mcq")
            model_name: Model name (if None, extracted from supervisor)
        """
        if model_name is None:
            if self.supervisor is not None:
                model_name = self.supervisor.llm_model.split(":")[-1]
            else:
                model_name = "unknown_model"

        # Sanitize model name for filename
        sanitized_model_name = self._sanitize_filename(model_name)

        timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
        if dataset_type == "ate":
            csv_path = (
                self.output_dir / f"cti-ate_{sanitized_model_name}_{timestamp}.csv"
            )
            with open(csv_path, "w", newline="", encoding="utf-8") as f:
                writer = csv.writer(f)
                writer.writerow(["Description", "GT", "Predicted"])

                for result in results:
                    description = result["description"]
                    gt = ", ".join(result["ground_truth"])
                    predicted = ", ".join(result["predicted"])
                    writer.writerow([description, gt, predicted])

            print(f"ATE results saved to: {csv_path}")

        elif dataset_type == "mcq":
            csv_path = (
                self.output_dir / f"cti-mcq_{sanitized_model_name}_{timestamp}.csv"
            )
            with open(csv_path, "w", newline="", encoding="utf-8") as f:
                writer = csv.writer(f)
                writer.writerow(["Prompt", "GT", "Predicted"])

                for result in results:
                    prompt = result["prompt"]
                    writer.writerow(
                        [prompt, result["ground_truth"], result["predicted"]]
                    )

            print(f"MCQ results saved to: {csv_path}")
        else:
            raise ValueError(f"Invalid dataset type: {dataset_type}")

    def save_evaluation_summary(
        self, metrics: Dict[str, float], dataset_type: str, model_name: str = None
    ):
        """
        Save evaluation summary to JSON file.

        Args:
            metrics: Evaluation metrics
            dataset_type: Type of dataset ("ate" or "mcq")
            model_name: Model name (if None, extracted from supervisor)
        """
        if model_name is None:
            if self.supervisor is not None:
                model_name = self.supervisor.llm_model.split(":")[-1]
            else:
                model_name = "unknown_model"

        # Sanitize model name for filename
        sanitized_model_name = self._sanitize_filename(model_name)

        timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
        summary = {
            "evaluation_timestamp": datetime.now().isoformat(),
            "dataset_type": dataset_type,
            "model_name": model_name,  # Keep original model name in JSON content
            "metrics": metrics,
        }

        summary_path = (
            self.output_dir
            / f"evaluation_summary_{dataset_type}_{sanitized_model_name}_{timestamp}.json"
        )
        with open(summary_path, "w", encoding="utf-8") as f:
            json.dump(summary, f, indent=2)

        print(f"Evaluation summary saved to: {summary_path}")

    def _extract_dataset_type_from_filename(self, filename: str) -> str:
        """
        Extract dataset type from CSV filename.

        Args:
            filename: The filename (without extension) to extract dataset type from

        Returns:
            Dataset type ("ate" or "mcq")
        """
        if "cti-ate" in filename.lower():
            return "ate"
        elif "cti-mcq" in filename.lower():
            return "mcq"
        else:
            raise ValueError(f"Cannot determine dataset type from filename: {filename}")

    def _sanitize_filename(self, filename: str) -> str:
        """
        Sanitize a string to be safe for use in filenames.

        Args:
            filename: The string to sanitize

        Returns:
            Sanitized filename string
        """
        import re

        # Replace invalid characters with dashes
        sanitized = re.sub(r'[/\\:*?"<>|]', "-", filename)

        # Remove any leading/trailing dashes and multiple consecutive dashes
        sanitized = re.sub(r"-+", "-", sanitized).strip("-")

        return sanitized if sanitized else "unknown"

    def read_csv_results(
        self, csv_path: str, dataset_type: str
    ) -> List[Dict[str, Any]]:
        """
        Read existing CSV results and convert to evaluation results format.

        Args:
            csv_path: Path to the CSV file
            dataset_type: Type of dataset ("ate" or "mcq")

        Returns:
            List of evaluation results in the same format as evaluate_*_dataset methods
        """
        try:
            df = pd.read_csv(csv_path)
            results = []

            if dataset_type == "ate":
                # Expected columns: Description, GT, Predicted
                for _, row in df.iterrows():
                    # Parse ground truth and predicted techniques
                    gt_techniques = [
                        t.strip() for t in str(row["GT"]).split(",") if t.strip()
                    ]
                    predicted_techniques = [
                        t.strip() for t in str(row["Predicted"]).split(",") if t.strip()
                    ]

                    result = {
                        "url": f"csv_row_{len(results)}",  # Placeholder URL
                        "description": str(row["Description"]),
                        "ground_truth": gt_techniques,
                        "predicted": predicted_techniques,
                        "response_text": f"GT: {', '.join(gt_techniques)}, Predicted: {', '.join(predicted_techniques)}",
                        "success": len(predicted_techniques) > 0,
                        "attempts": 1,
                    }
                    results.append(result)

            elif dataset_type == "mcq":
                # Expected columns: Prompt, GT, Predicted
                for _, row in df.iterrows():
                    gt_answer = str(row["GT"]).strip().upper()
                    predicted_answer = str(row["Predicted"]).strip().upper()

                    result = {
                        "url": f"csv_row_{len(results)}",  # Placeholder URL
                        "prompt": str(row["Prompt"]),
                        "ground_truth": gt_answer,
                        "predicted": predicted_answer,
                        "response_text": f"GT: {gt_answer}, Predicted: {predicted_answer}",
                        "correct": predicted_answer == gt_answer,
                        "success": len(predicted_answer) > 0,
                    }
                    results.append(result)

            else:
                raise ValueError(f"Invalid dataset type: {dataset_type}")

            print(f"Successfully read {len(results)} results from {csv_path}")
            return results

        except Exception as e:
            print(f"Error reading CSV file {csv_path}: {e}")
            raise

    def calculate_metrics_from_csv(
        self, csv_path: str, model_name: str = None
    ) -> Dict[str, Any]:
        """
        Read existing CSV results, calculate metrics, and save summary.

        Args:
            csv_path: Path to the CSV file
            model_name: Model name to use in summary (if None, extracted from filename)

        Returns:
            Dictionary containing results and metrics
        """
        # Extract dataset type and model name from filename
        filename = Path(csv_path).stem
        dataset_type = self._extract_dataset_type_from_filename(filename)

        if model_name is None:
            # Try to extract model name from filename (e.g., cti-ate_gemini-2.0-flash_20251024_193022)
            parts = filename.split("_")
            if len(parts) >= 2:
                model_name = parts[1]  # Second part should be model name
            else:
                model_name = "unknown_model"

        print(f"Processing CSV file: {csv_path}")
        print(f"Dataset type: {dataset_type} (extracted from filename)")
        print(f"Model name: {model_name}")

        # Read results from CSV
        results = self.read_csv_results(csv_path, dataset_type)

        # Calculate metrics
        if dataset_type == "ate":
            metrics = self.calculate_ate_metrics(results)
        elif dataset_type == "mcq":
            metrics = self.calculate_mcq_metrics(results)
        else:
            raise ValueError(f"Invalid dataset type: {dataset_type}")

        # Save evaluation summary
        sanitized_model_name = self._sanitize_filename(model_name)
        timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
        summary = {
            "evaluation_timestamp": datetime.now().isoformat(),
            "dataset_type": dataset_type,
            "model_name": model_name,  # Keep original model name in JSON content
            "source_csv": csv_path,
            "metrics": metrics,
        }

        summary_path = (
            self.output_dir
            / f"evaluation_summary_{dataset_type}_{sanitized_model_name}_{timestamp}.json"
        )
        with open(summary_path, "w", encoding="utf-8") as f:
            json.dump(summary, f, indent=2)

        print(f"Evaluation summary saved to: {summary_path}")

        # Print summary of results
        print(f"\n{'='*60}")
        print(f"METRICS FROM CSV: {dataset_type.upper()}")
        print(f"{'='*60}")

        if dataset_type == "ate":
            print(f"Macro F1: {metrics.get('macro_f1', 0.0):.3f}")
            print(f"Macro Precision: {metrics.get('macro_precision', 0.0):.3f}")
            print(f"Macro Recall: {metrics.get('macro_recall', 0.0):.3f}")
            print(f"Micro F1: {metrics.get('micro_f1', 0.0):.3f}")
            print(f"Exact Match: {metrics.get('exact_match_ratio', 0.0):.3f}")
            print(f"Success Rate: {metrics.get('success_rate', 0.0):.3f}")
            print(f"Total Samples: {metrics.get('total_samples', 0)}")
        elif dataset_type == "mcq":
            print(f"Accuracy: {metrics.get('accuracy', 0.0):.3f}")
            print(f"F1 Macro: {metrics.get('f1_macro', 0.0):.3f}")
            print(f"Success Rate: {metrics.get('success_rate', 0.0):.3f}")
            print(f"Total Samples: {metrics.get('total_samples', 0)}")

        print(f"{'='*60}")

        return {
            "results": results,
            "metrics": metrics,
            "summary_path": str(summary_path),
        }

    def run_full_evaluation(self) -> Dict[str, Any]:
        """
        Run the complete evaluation pipeline.

        Returns:
            Dictionary containing all evaluation results and metrics
        """
        print("Starting CTI Bench evaluation...")
        print(f"Output directory: {self.output_dir}")

        # Load and filter datasets
        ate_df, mcq_df = self.load_datasets()
        ate_filtered = self.filter_dataset(ate_df, "ate")
        mcq_filtered = self.filter_dataset(mcq_df, "mcq")

        # Evaluate datasets and calculate metrics for ATE
        ate_results = self.evaluate_ate_dataset(ate_filtered)
        ate_metrics = self.calculate_ate_metrics(ate_results)

        # Evaluate datasets and calculate metrics for MCQ
        mcq_results = self.evaluate_mcq_dataset(mcq_filtered)
        mcq_metrics = self.calculate_mcq_metrics(mcq_results)

        # Save results to CSV files
        self.save_results_to_csv(ate_results, "ate")
        self.save_results_to_csv(mcq_results, "mcq")
        self.save_evaluation_summary(ate_metrics, "ate")
        self.save_evaluation_summary(mcq_metrics, "mcq")

        # Print summary of evaluation results
        print(f"\n{'='*60}")
        print("EVALUATION SUMMARY")
        print(f"{'='*60}")
        print(f"CTI-ATE Results:")
        print(f"  Macro F1: {ate_metrics.get('macro_f1', 0.0):.3f}")
        print(f"  Macro Precision: {ate_metrics.get('macro_precision', 0.0):.3f}")
        print(f"  Macro Recall: {ate_metrics.get('macro_recall', 0.0):.3f}")
        print(f"  Micro F1: {ate_metrics.get('micro_f1', 0.0):.3f}")
        print(f"  Exact Match: {ate_metrics.get('exact_match_ratio', 0.0):.3f}")
        print(f"  Success Rate: {ate_metrics.get('success_rate', 0.0):.3f}")
        print(f"  Total Samples: {ate_metrics.get('total_samples', 0)}")

        print(f"\nCTI-MCQ Results:")
        print(f"  Accuracy: {mcq_metrics.get('accuracy', 0.0):.3f}")
        print(f"  F1 Macro: {mcq_metrics.get('f1_macro', 0.0):.3f}")
        print(f"  Success Rate: {mcq_metrics.get('success_rate', 0.0):.3f}")
        print(f"  Total Samples: {mcq_metrics.get('total_samples', 0)}")
        print(f"{'='*60}")

        return {
            "ate_results": ate_results,
            "mcq_results": mcq_results,
            "ate_metrics": ate_metrics,
            "mcq_metrics": mcq_metrics,
        }

    def run_ate_evaluation(self) -> Dict[str, Any]:
        """
        Run evaluation on ATE dataset only.

        Returns:
            Dictionary containing ATE evaluation results and metrics
        """
        print("Starting CTI-ATE evaluation...")
        print(f"Output directory: {self.output_dir}")

        # Load and filter datasets
        ate_df, mcq_df = self.load_datasets()
        ate_filtered = self.filter_dataset(ate_df, "ate")

        # Evaluate ATE dataset and calculate metrics
        ate_results = self.evaluate_ate_dataset(ate_filtered)
        ate_metrics = self.calculate_ate_metrics(ate_results)

        # Save results to CSV files (ATE only)
        self.save_results_to_csv(ate_results, "ate")
        self.save_evaluation_summary(ate_metrics, "ate")

        # Print summary of evaluation results
        print(f"\n{'='*60}")
        print("CTI-ATE EVALUATION SUMMARY")
        print(f"{'='*60}")
        print(f"CTI-ATE Results:")
        print(f"  Macro F1: {ate_metrics.get('macro_f1', 0.0):.3f}")
        print(f"  Macro Precision: {ate_metrics.get('macro_precision', 0.0):.3f}")
        print(f"  Macro Recall: {ate_metrics.get('macro_recall', 0.0):.3f}")
        print(f"  Micro F1: {ate_metrics.get('micro_f1', 0.0):.3f}")
        print(f"  Exact Match: {ate_metrics.get('exact_match_ratio', 0.0):.3f}")
        print(f"  Success Rate: {ate_metrics.get('success_rate', 0.0):.3f}")
        print(f"  Total Samples: {ate_metrics.get('total_samples', 0)}")
        print(f"{'='*60}")

        return {
            "ate_results": ate_results,
            "ate_metrics": ate_metrics,
        }

    def run_mcq_evaluation(self) -> Dict[str, Any]:
        """
        Run evaluation on MCQ dataset only.

        Returns:
            Dictionary containing MCQ evaluation results and metrics
        """
        print("Starting CTI-MCQ evaluation...")
        print(f"Output directory: {self.output_dir}")

        # Load and filter datasets
        ate_df, mcq_df = self.load_datasets()
        mcq_filtered = self.filter_dataset(mcq_df, "mcq")

        # Evaluate MCQ dataset and calculate metrics
        mcq_results = self.evaluate_mcq_dataset(mcq_filtered)
        mcq_metrics = self.calculate_mcq_metrics(mcq_results)

        # Save results to CSV files (MCQ only)
        self.save_results_to_csv(mcq_results, "mcq")
        self.save_evaluation_summary(mcq_metrics, "mcq")

        # Print summary of evaluation results
        print(f"\n{'='*60}")
        print("CTI-MCQ EVALUATION SUMMARY")
        print(f"{'='*60}")
        print(f"CTI-MCQ Results:")
        print(f"  Accuracy: {mcq_metrics.get('accuracy', 0.0):.3f}")
        print(f"  F1 Macro: {mcq_metrics.get('f1_macro', 0.0):.3f}")
        print(f"  Success Rate: {mcq_metrics.get('success_rate', 0.0):.3f}")
        print(f"  Total Samples: {mcq_metrics.get('total_samples', 0)}")
        print(f"{'='*60}")

        return {
            "mcq_results": mcq_results,
            "mcq_metrics": mcq_metrics,
        }


def main():
    """Main function to run the evaluation."""
    import argparse

    parser = argparse.ArgumentParser(
        description="Evaluate Retrieval Supervisor on CTI Bench dataset"
    )
    parser.add_argument(
        "--dataset-dir",
        default="cti_bench/datasets",
        help="Directory containing CTI Bench datasets",
    )
    parser.add_argument(
        "--output-dir",
        default="cti_bench/eval_output",
        help="Directory to save evaluation results",
    )
    parser.add_argument(
        "--kb-path",
        default="./cyber_knowledge_base",
        help="Path to cyber knowledge base",
    )
    parser.add_argument(
        "--llm-model", default="google_genai:gemini-2.0-flash", help="LLM model to use"
    )
    parser.add_argument(
        "--max-samples",
        type=int,
        help="Maximum number of samples to evaluate (for testing)",
    )

    args = parser.parse_args()

    try:
        # Initialize supervisor
        print("Initializing Retrieval Supervisor...")
        supervisor = RetrievalSupervisor(
            llm_model=args.llm_model, kb_path=args.kb_path, max_iterations=3
        )

        # Initialize evaluator
        evaluator = CTIBenchEvaluator(
            supervisor=supervisor,
            dataset_dir=args.dataset_dir,
            output_dir=args.output_dir,
        )

        # Run evaluation
        results = evaluator.run_full_evaluation()

        print("Evaluation completed successfully!")

    except Exception as e:
        print(f"Evaluation failed: {e}")
        import traceback

        traceback.print_exc()


if __name__ == "__main__":
    main()