File size: 39,172 Bytes
223ef32 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 |
"""
CTI Bench Evaluation Script for Cybersecurity Retrieval System
This script evaluates the retrieval supervisor system against the CTI Bench dataset,
including both CTI-ATE (attack technique extraction) and CTI-MCQ (multiple choice questions).
"""
import os
import sys
import pandas as pd
import re
import json
import csv
from pathlib import Path
from typing import Dict, List, Tuple, Any, Optional
from datetime import datetime
from sklearn.metrics import f1_score, precision_score, recall_score, accuracy_score
import numpy as np
# Import your supervisor
from src.agents.retrieval_supervisor.supervisor import RetrievalSupervisor
class CTIBenchEvaluator:
"""Evaluator for CTI Bench dataset using the Retrieval Supervisor."""
def __init__(
self,
supervisor: Optional[RetrievalSupervisor],
dataset_dir: str = "cti_bench/datasets",
output_dir: str = "cti_bench/eval_output",
):
"""
Initialize the CTI Bench evaluator.
Args:
supervisor: RetrievalSupervisor instance (can be None for CSV processing)
dataset_dir: Directory containing CTI Bench datasets
output_dir: Directory to save evaluation results
"""
self.supervisor = supervisor
self.dataset_dir = Path(dataset_dir)
self.output_dir = Path(output_dir)
self.output_dir.mkdir(parents=True, exist_ok=True)
# Templates for queries
self.ate_query_template = """You are a cybersecurity expert specializing in cyber threat intelligence.
Extract all MITRE Enterprise attack patterns from the following text and map them to their corresponding MITRE technique IDs.
Provide reasoning for each identification.
Ensure the final line contains only the IDs for the main techniques, separated by commas, excluding any subtechnique IDs.
Example of the final line: T1071, T1560, T1547
Text:
{attack_description}
"""
def load_datasets(self) -> Tuple[pd.DataFrame, pd.DataFrame]:
"""Load CTI-ATE and CTI-MCQ datasets."""
try:
# Load CTI-ATE dataset
ate_path = self.dataset_dir / "cti-ate.tsv"
ate_df = pd.read_csv(ate_path, sep="\t")
print(f"Loaded CTI-ATE dataset: {len(ate_df)} samples")
# Load CTI-MCQ dataset
mcq_path = self.dataset_dir / "cti-mcq.tsv"
mcq_df = pd.read_csv(mcq_path, sep="\t")
print(f"Loaded CTI-MCQ dataset: {len(mcq_df)} samples")
return ate_df, mcq_df
except Exception as e:
print(f"Error loading datasets: {e}")
raise
def filter_dataset(self, df: pd.DataFrame, dataset_type: str) -> pd.DataFrame:
"""Filter dataset according to requirements."""
if dataset_type == "ate":
# Filter ATE: only Enterprise platform
filtered_df = df[df["Platform"] == "Enterprise"].copy()
print(
f"CTI-ATE filtered to Enterprise platform: {len(filtered_df)} samples"
)
elif dataset_type == "mcq":
# Filter MCQ: only samples with "techniques" in URL
filtered_df = df[df["URL"].str.contains("techniques", na=False)].copy()
print(f"CTI-MCQ filtered to technique URLs: {len(filtered_df)} samples")
else:
raise ValueError(f"Invalid dataset type: {dataset_type}")
return filtered_df
def extract_technique_ids_from_response(self, response: str) -> List[str]:
"""
Extract MITRE technique IDs from the response text.
Simplified version: only checks the final line.
Args:
response: Response text from the supervisor
Returns:
List of extracted technique IDs, or empty list if not successful
"""
# Get the final line
lines = response.strip().split("\n")
if not lines:
return []
final_line = lines[-1].strip()
if not final_line:
return []
# Pattern to match MITRE technique IDs (T followed by 4 digits, optionally followed by .XXX)
technique_pattern = r"\bT\d{4}(?:\.\d{3})?\b"
# Check if final line contains only technique IDs, commas, and spaces
techniques_in_line = re.findall(technique_pattern, final_line)
if not techniques_in_line:
return []
# Check if the line is only technique IDs, commas, and spaces
clean_line = re.sub(r"[T\d.,\s]", "", final_line)
if len(clean_line) > 0:
return [] # Not successful - line contains other characters
# Return all technique IDs from the final line (excluding subtechniques)
return [t for t in techniques_in_line if "." not in t]
def extract_mcq_answer_from_response(self, response: str) -> str:
"""
Extract the final answer (A, B, C, or D) from MCQ response.
Args:
response: Response text from the supervisor
Returns:
Extracted answer letter or empty string if not found
"""
# Look for single letter answers at the end of lines
lines = response.strip().split("\n")
# Check the last few lines for a single letter answer
for line in reversed(lines[-3:]):
line = line.strip()
if line in ["A", "B", "C", "D"]:
return line
# Check for patterns like "Answer: A" or "The answer is B"
match = re.search(r"\b([ABCD])\b(?:\s*[.)]?)\s*$", line)
if match:
return match.group(1)
# Fallback: search the entire response for answer patterns
answer_patterns = [
r"(?:answer|choice|option).*?([ABCD])",
r"\b([ABCD])\b(?:\s*[.)]?)\s*$",
r"^([ABCD])$",
]
for pattern in answer_patterns:
matches = re.findall(pattern, response, re.IGNORECASE | re.MULTILINE)
if matches:
return matches[-1].upper()
return "" # No answer found
def evaluate_ate_dataset(self, ate_df: pd.DataFrame) -> List[Dict[str, Any]]:
"""
Evaluate the CTI-ATE dataset.
Args:
ate_df: Filtered CTI-ATE dataset
Returns:
List of evaluation results
"""
results = []
print(f"\n{'='*60}")
print("EVALUATING CTI-ATE DATASET")
print(f"{'='*60}")
for i, (idx, row) in enumerate(ate_df.iterrows()):
print(f"Processing ATE sample {i + 1}/{len(ate_df)}: {row['URL']}")
# Retry up to 3 times for each sample
max_retries = 3
success = False
result = None
for attempt in range(max_retries):
try:
print(f" Attempt {attempt + 1}/{max_retries}")
# Create query from template
query = self.ate_query_template.format(
attack_description=row["Description"]
)
# Get response from supervisor
response = self.supervisor.invoke_direct_query(query, trace=False)
# Extract final message content from LangGraph result
if "messages" in response and response["messages"]:
# Get the last AI message from the conversation
last_message = None
for msg in reversed(response["messages"]):
try:
if (
hasattr(msg, "content")
and hasattr(msg, "type")
and msg.type == "ai"
):
last_message = msg
break
except (AttributeError, TypeError) as e:
# Handle cases where msg.type might be an int instead of string
print(f" Warning: Error accessing message type: {e}")
continue
if last_message:
response_text = last_message.content
else:
# Fallback: get the last message regardless of type
try:
response_text = response["messages"][-1].content
except (AttributeError, TypeError) as e:
print(
f" Warning: Error accessing last message content: {e}"
)
response_text = str(response["messages"][-1])
else:
response_text = str(response)
# Extract technique IDs from response
predicted_techniques = self.extract_technique_ids_from_response(
response_text
)
# Parse ground truth
gt_techniques = [
t.strip() for t in row["GT"].split(",") if t.strip()
]
# Check if extraction was successful
if len(predicted_techniques) > 0:
success = True
result = {
"url": row["URL"],
"description": row["Description"],
"ground_truth": gt_techniques,
"predicted": predicted_techniques,
"response_text": response_text,
"success": True,
"attempts": attempt + 1,
}
print(f" GT: {gt_techniques}")
print(f" Predicted: {predicted_techniques}")
print(f" Success: {result['success']} (attempt {attempt + 1})")
break
else:
print(f" No techniques extracted on attempt {attempt + 1}")
if attempt == max_retries - 1:
# Final attempt failed
result = {
"url": row["URL"],
"description": row["Description"],
"ground_truth": gt_techniques,
"predicted": [],
"response_text": response_text,
"success": False,
"attempts": max_retries,
}
print(f" GT: {gt_techniques}")
print(f" Predicted: {predicted_techniques}")
print(
f" Success: {result['success']} (all attempts failed)"
)
print(f" Response text: {response_text}")
except Exception as e:
print(f" Error processing sample (attempt {attempt + 1}): {e}")
if attempt == max_retries - 1:
# Final attempt failed
result = {
"url": row["URL"],
"description": row["Description"],
"ground_truth": [
t.strip() for t in row["GT"].split(",") if t.strip()
],
"predicted": [],
"response_text": f"Error: {str(e)}",
"success": False,
"attempts": max_retries,
}
print(f" Success: {result['success']} (all attempts failed)")
results.append(result)
return results
def evaluate_mcq_dataset(self, mcq_df: pd.DataFrame) -> List[Dict[str, Any]]:
"""
Evaluate the CTI-MCQ dataset.
Args:
mcq_df: Filtered CTI-MCQ dataset
Returns:
List of evaluation results
"""
results = []
print(f"\n{'='*60}")
print("EVALUATING CTI-MCQ DATASET")
print(f"{'='*60}")
for i, (idx, row) in enumerate(mcq_df.iterrows()):
print(f"Processing MCQ sample {i + 1}/{len(mcq_df)}: {row['URL']}")
try:
# Use the provided prompt
query = row["Prompt"]
# Get response from supervisor
response = self.supervisor.invoke_direct_query(query, trace=False)
# Extract final message content from LangGraph result
if "messages" in response and response["messages"]:
# Get the last AI message from the conversation
last_message = None
for msg in reversed(response["messages"]):
try:
if (
hasattr(msg, "content")
and hasattr(msg, "type")
and msg.type == "ai"
):
last_message = msg
break
except (AttributeError, TypeError) as e:
# Handle cases where msg.type might be an int instead of string
print(f" Warning: Error accessing message type: {e}")
continue
if last_message:
response_text = last_message.content
else:
# Fallback: get the last message regardless of type
try:
response_text = response["messages"][-1].content
except (AttributeError, TypeError) as e:
print(
f" Warning: Error accessing last message content: {e}"
)
response_text = str(response["messages"][-1])
else:
response_text = str(response)
# Extract answer from response
predicted_answer = self.extract_mcq_answer_from_response(response_text)
# Ground truth answer
gt_answer = row["GT"].strip().upper()
# Store result
result = {
"url": row["URL"],
"prompt": row["Prompt"],
"ground_truth": gt_answer,
"predicted": predicted_answer,
"response_text": response_text,
"correct": predicted_answer == gt_answer,
"success": len(predicted_answer) > 0,
}
results.append(result)
print(f" GT: {gt_answer}")
print(f" Predicted: {predicted_answer}")
print(f" Correct: {result['correct']}")
except Exception as e:
print(f" Error processing sample: {e}")
result = {
"url": row["URL"],
"prompt": row["Prompt"],
"ground_truth": row["GT"].strip().upper(),
"predicted": "",
"response_text": f"Error: {str(e)}",
"correct": False,
"success": False,
}
results.append(result)
return results
def calculate_ate_metrics(self, results: List[Dict[str, Any]]) -> Dict[str, float]:
"""
Calculate evaluation metrics for ATE dataset using sample-level metrics.
Args:
results: List of ATE evaluation results
Returns:
Dictionary of calculated metrics
"""
if not results:
return {}
# Collect all unique technique IDs
all_techniques = set()
for result in results:
all_techniques.update(result["ground_truth"])
all_techniques.update(result["predicted"])
all_techniques = sorted(list(all_techniques))
# Sample-level metrics (macro = average across samples)
sample_precisions = []
sample_recalls = []
sample_f1s = []
for result in results:
gt_set = set(result["ground_truth"])
pred_set = set(result["predicted"])
# Calculate precision, recall, and F1 for this sample
if len(pred_set) == 0:
precision = 0.0
else:
precision = len(gt_set.intersection(pred_set)) / len(pred_set)
if len(gt_set) == 0:
recall = 1.0 if len(pred_set) == 0 else 0.0
else:
recall = len(gt_set.intersection(pred_set)) / len(gt_set)
if precision + recall == 0:
f1 = 0.0
else:
f1 = 2 * (precision * recall) / (precision + recall)
sample_precisions.append(precision)
sample_recalls.append(recall)
sample_f1s.append(f1)
# Calculate macro-averaged metrics (average across samples)
macro_precision = np.mean(sample_precisions)
macro_recall = np.mean(sample_recalls)
macro_f1 = np.mean(sample_f1s)
# Sample-level micro metrics (aggregate TP, FP, FN across all samples)
total_tp = 0
total_fp = 0
total_fn = 0
for result in results:
gt_set = set(result["ground_truth"])
pred_set = set(result["predicted"])
tp = len(gt_set.intersection(pred_set))
fp = len(pred_set - gt_set)
fn = len(gt_set - pred_set)
total_tp += tp
total_fp += fp
total_fn += fn
# Calculate micro-averaged metrics
if total_tp + total_fp == 0:
micro_precision = 0.0
else:
micro_precision = total_tp / (total_tp + total_fp)
if total_tp + total_fn == 0:
micro_recall = 0.0
else:
micro_recall = total_tp / (total_tp + total_fn)
if micro_precision + micro_recall == 0:
micro_f1 = 0.0
else:
micro_f1 = (
2 * (micro_precision * micro_recall) / (micro_precision + micro_recall)
)
# Additional metrics
exact_match = sum(
1 for r in results if set(r["ground_truth"]) == set(r["predicted"])
) / len(results)
success_rate = sum(1 for r in results if r["success"]) / len(results)
return {
# Primary metrics (sample-level)
"macro_f1": macro_f1,
"macro_precision": macro_precision,
"macro_recall": macro_recall,
"micro_f1": micro_f1,
"micro_precision": micro_precision,
"micro_recall": micro_recall,
# Additional metrics
"exact_match_ratio": exact_match,
"success_rate": success_rate,
"total_samples": len(results),
"total_techniques": len(all_techniques),
}
def calculate_mcq_metrics(self, results: List[Dict[str, Any]]) -> Dict[str, float]:
"""
Calculate evaluation metrics for MCQ dataset.
Args:
results: List of MCQ evaluation results
Returns:
Dictionary of calculated metrics
"""
if not results:
return {}
# Prepare labels for sklearn metrics
y_true = []
y_pred = []
for result in results:
if result["success"]: # Only include samples where we got a prediction
y_true.append(result["ground_truth"])
y_pred.append(result["predicted"])
if not y_true:
return {
"accuracy": 0.0,
"f1_macro": 0.0,
"f1_micro": 0.0,
"precision_macro": 0.0,
"recall_macro": 0.0,
"success_rate": 0.0,
"total_samples": len(results),
"answered_samples": 0,
}
# Calculate metrics
accuracy = accuracy_score(y_true, y_pred)
f1_macro = f1_score(y_true, y_pred, average="macro", zero_division=0)
f1_micro = f1_score(y_true, y_pred, average="micro", zero_division=0)
precision_macro = precision_score(
y_true, y_pred, average="macro", zero_division=0
)
recall_macro = recall_score(y_true, y_pred, average="macro", zero_division=0)
success_rate = sum(1 for r in results if r["success"]) / len(results)
return {
"accuracy": accuracy,
"f1_macro": f1_macro,
"f1_micro": f1_micro,
"precision_macro": precision_macro,
"recall_macro": recall_macro,
"success_rate": success_rate,
"total_samples": len(results),
"answered_samples": len(y_true),
}
def save_results_to_csv(
self, results: List[Dict[str, Any]], dataset_type: str, model_name: str = None
):
"""
Save evaluation results to CSV file.
Args:
results: Evaluation results
dataset_type: Type of dataset ("ate" or "mcq")
model_name: Model name (if None, extracted from supervisor)
"""
if model_name is None:
if self.supervisor is not None:
model_name = self.supervisor.llm_model.split(":")[-1]
else:
model_name = "unknown_model"
# Sanitize model name for filename
sanitized_model_name = self._sanitize_filename(model_name)
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
if dataset_type == "ate":
csv_path = (
self.output_dir / f"cti-ate_{sanitized_model_name}_{timestamp}.csv"
)
with open(csv_path, "w", newline="", encoding="utf-8") as f:
writer = csv.writer(f)
writer.writerow(["Description", "GT", "Predicted"])
for result in results:
description = result["description"]
gt = ", ".join(result["ground_truth"])
predicted = ", ".join(result["predicted"])
writer.writerow([description, gt, predicted])
print(f"ATE results saved to: {csv_path}")
elif dataset_type == "mcq":
csv_path = (
self.output_dir / f"cti-mcq_{sanitized_model_name}_{timestamp}.csv"
)
with open(csv_path, "w", newline="", encoding="utf-8") as f:
writer = csv.writer(f)
writer.writerow(["Prompt", "GT", "Predicted"])
for result in results:
prompt = result["prompt"]
writer.writerow(
[prompt, result["ground_truth"], result["predicted"]]
)
print(f"MCQ results saved to: {csv_path}")
else:
raise ValueError(f"Invalid dataset type: {dataset_type}")
def save_evaluation_summary(
self, metrics: Dict[str, float], dataset_type: str, model_name: str = None
):
"""
Save evaluation summary to JSON file.
Args:
metrics: Evaluation metrics
dataset_type: Type of dataset ("ate" or "mcq")
model_name: Model name (if None, extracted from supervisor)
"""
if model_name is None:
if self.supervisor is not None:
model_name = self.supervisor.llm_model.split(":")[-1]
else:
model_name = "unknown_model"
# Sanitize model name for filename
sanitized_model_name = self._sanitize_filename(model_name)
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
summary = {
"evaluation_timestamp": datetime.now().isoformat(),
"dataset_type": dataset_type,
"model_name": model_name, # Keep original model name in JSON content
"metrics": metrics,
}
summary_path = (
self.output_dir
/ f"evaluation_summary_{dataset_type}_{sanitized_model_name}_{timestamp}.json"
)
with open(summary_path, "w", encoding="utf-8") as f:
json.dump(summary, f, indent=2)
print(f"Evaluation summary saved to: {summary_path}")
def _extract_dataset_type_from_filename(self, filename: str) -> str:
"""
Extract dataset type from CSV filename.
Args:
filename: The filename (without extension) to extract dataset type from
Returns:
Dataset type ("ate" or "mcq")
"""
if "cti-ate" in filename.lower():
return "ate"
elif "cti-mcq" in filename.lower():
return "mcq"
else:
raise ValueError(f"Cannot determine dataset type from filename: {filename}")
def _sanitize_filename(self, filename: str) -> str:
"""
Sanitize a string to be safe for use in filenames.
Args:
filename: The string to sanitize
Returns:
Sanitized filename string
"""
import re
# Replace invalid characters with dashes
sanitized = re.sub(r'[/\\:*?"<>|]', "-", filename)
# Remove any leading/trailing dashes and multiple consecutive dashes
sanitized = re.sub(r"-+", "-", sanitized).strip("-")
return sanitized if sanitized else "unknown"
def read_csv_results(
self, csv_path: str, dataset_type: str
) -> List[Dict[str, Any]]:
"""
Read existing CSV results and convert to evaluation results format.
Args:
csv_path: Path to the CSV file
dataset_type: Type of dataset ("ate" or "mcq")
Returns:
List of evaluation results in the same format as evaluate_*_dataset methods
"""
try:
df = pd.read_csv(csv_path)
results = []
if dataset_type == "ate":
# Expected columns: Description, GT, Predicted
for _, row in df.iterrows():
# Parse ground truth and predicted techniques
gt_techniques = [
t.strip() for t in str(row["GT"]).split(",") if t.strip()
]
predicted_techniques = [
t.strip() for t in str(row["Predicted"]).split(",") if t.strip()
]
result = {
"url": f"csv_row_{len(results)}", # Placeholder URL
"description": str(row["Description"]),
"ground_truth": gt_techniques,
"predicted": predicted_techniques,
"response_text": f"GT: {', '.join(gt_techniques)}, Predicted: {', '.join(predicted_techniques)}",
"success": len(predicted_techniques) > 0,
"attempts": 1,
}
results.append(result)
elif dataset_type == "mcq":
# Expected columns: Prompt, GT, Predicted
for _, row in df.iterrows():
gt_answer = str(row["GT"]).strip().upper()
predicted_answer = str(row["Predicted"]).strip().upper()
result = {
"url": f"csv_row_{len(results)}", # Placeholder URL
"prompt": str(row["Prompt"]),
"ground_truth": gt_answer,
"predicted": predicted_answer,
"response_text": f"GT: {gt_answer}, Predicted: {predicted_answer}",
"correct": predicted_answer == gt_answer,
"success": len(predicted_answer) > 0,
}
results.append(result)
else:
raise ValueError(f"Invalid dataset type: {dataset_type}")
print(f"Successfully read {len(results)} results from {csv_path}")
return results
except Exception as e:
print(f"Error reading CSV file {csv_path}: {e}")
raise
def calculate_metrics_from_csv(
self, csv_path: str, model_name: str = None
) -> Dict[str, Any]:
"""
Read existing CSV results, calculate metrics, and save summary.
Args:
csv_path: Path to the CSV file
model_name: Model name to use in summary (if None, extracted from filename)
Returns:
Dictionary containing results and metrics
"""
# Extract dataset type and model name from filename
filename = Path(csv_path).stem
dataset_type = self._extract_dataset_type_from_filename(filename)
if model_name is None:
# Try to extract model name from filename (e.g., cti-ate_gemini-2.0-flash_20251024_193022)
parts = filename.split("_")
if len(parts) >= 2:
model_name = parts[1] # Second part should be model name
else:
model_name = "unknown_model"
print(f"Processing CSV file: {csv_path}")
print(f"Dataset type: {dataset_type} (extracted from filename)")
print(f"Model name: {model_name}")
# Read results from CSV
results = self.read_csv_results(csv_path, dataset_type)
# Calculate metrics
if dataset_type == "ate":
metrics = self.calculate_ate_metrics(results)
elif dataset_type == "mcq":
metrics = self.calculate_mcq_metrics(results)
else:
raise ValueError(f"Invalid dataset type: {dataset_type}")
# Save evaluation summary
sanitized_model_name = self._sanitize_filename(model_name)
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
summary = {
"evaluation_timestamp": datetime.now().isoformat(),
"dataset_type": dataset_type,
"model_name": model_name, # Keep original model name in JSON content
"source_csv": csv_path,
"metrics": metrics,
}
summary_path = (
self.output_dir
/ f"evaluation_summary_{dataset_type}_{sanitized_model_name}_{timestamp}.json"
)
with open(summary_path, "w", encoding="utf-8") as f:
json.dump(summary, f, indent=2)
print(f"Evaluation summary saved to: {summary_path}")
# Print summary of results
print(f"\n{'='*60}")
print(f"METRICS FROM CSV: {dataset_type.upper()}")
print(f"{'='*60}")
if dataset_type == "ate":
print(f"Macro F1: {metrics.get('macro_f1', 0.0):.3f}")
print(f"Macro Precision: {metrics.get('macro_precision', 0.0):.3f}")
print(f"Macro Recall: {metrics.get('macro_recall', 0.0):.3f}")
print(f"Micro F1: {metrics.get('micro_f1', 0.0):.3f}")
print(f"Exact Match: {metrics.get('exact_match_ratio', 0.0):.3f}")
print(f"Success Rate: {metrics.get('success_rate', 0.0):.3f}")
print(f"Total Samples: {metrics.get('total_samples', 0)}")
elif dataset_type == "mcq":
print(f"Accuracy: {metrics.get('accuracy', 0.0):.3f}")
print(f"F1 Macro: {metrics.get('f1_macro', 0.0):.3f}")
print(f"Success Rate: {metrics.get('success_rate', 0.0):.3f}")
print(f"Total Samples: {metrics.get('total_samples', 0)}")
print(f"{'='*60}")
return {
"results": results,
"metrics": metrics,
"summary_path": str(summary_path),
}
def run_full_evaluation(self) -> Dict[str, Any]:
"""
Run the complete evaluation pipeline.
Returns:
Dictionary containing all evaluation results and metrics
"""
print("Starting CTI Bench evaluation...")
print(f"Output directory: {self.output_dir}")
# Load and filter datasets
ate_df, mcq_df = self.load_datasets()
ate_filtered = self.filter_dataset(ate_df, "ate")
mcq_filtered = self.filter_dataset(mcq_df, "mcq")
# Evaluate datasets and calculate metrics for ATE
ate_results = self.evaluate_ate_dataset(ate_filtered)
ate_metrics = self.calculate_ate_metrics(ate_results)
# Evaluate datasets and calculate metrics for MCQ
mcq_results = self.evaluate_mcq_dataset(mcq_filtered)
mcq_metrics = self.calculate_mcq_metrics(mcq_results)
# Save results to CSV files
self.save_results_to_csv(ate_results, "ate")
self.save_results_to_csv(mcq_results, "mcq")
self.save_evaluation_summary(ate_metrics, "ate")
self.save_evaluation_summary(mcq_metrics, "mcq")
# Print summary of evaluation results
print(f"\n{'='*60}")
print("EVALUATION SUMMARY")
print(f"{'='*60}")
print(f"CTI-ATE Results:")
print(f" Macro F1: {ate_metrics.get('macro_f1', 0.0):.3f}")
print(f" Macro Precision: {ate_metrics.get('macro_precision', 0.0):.3f}")
print(f" Macro Recall: {ate_metrics.get('macro_recall', 0.0):.3f}")
print(f" Micro F1: {ate_metrics.get('micro_f1', 0.0):.3f}")
print(f" Exact Match: {ate_metrics.get('exact_match_ratio', 0.0):.3f}")
print(f" Success Rate: {ate_metrics.get('success_rate', 0.0):.3f}")
print(f" Total Samples: {ate_metrics.get('total_samples', 0)}")
print(f"\nCTI-MCQ Results:")
print(f" Accuracy: {mcq_metrics.get('accuracy', 0.0):.3f}")
print(f" F1 Macro: {mcq_metrics.get('f1_macro', 0.0):.3f}")
print(f" Success Rate: {mcq_metrics.get('success_rate', 0.0):.3f}")
print(f" Total Samples: {mcq_metrics.get('total_samples', 0)}")
print(f"{'='*60}")
return {
"ate_results": ate_results,
"mcq_results": mcq_results,
"ate_metrics": ate_metrics,
"mcq_metrics": mcq_metrics,
}
def run_ate_evaluation(self) -> Dict[str, Any]:
"""
Run evaluation on ATE dataset only.
Returns:
Dictionary containing ATE evaluation results and metrics
"""
print("Starting CTI-ATE evaluation...")
print(f"Output directory: {self.output_dir}")
# Load and filter datasets
ate_df, mcq_df = self.load_datasets()
ate_filtered = self.filter_dataset(ate_df, "ate")
# Evaluate ATE dataset and calculate metrics
ate_results = self.evaluate_ate_dataset(ate_filtered)
ate_metrics = self.calculate_ate_metrics(ate_results)
# Save results to CSV files (ATE only)
self.save_results_to_csv(ate_results, "ate")
self.save_evaluation_summary(ate_metrics, "ate")
# Print summary of evaluation results
print(f"\n{'='*60}")
print("CTI-ATE EVALUATION SUMMARY")
print(f"{'='*60}")
print(f"CTI-ATE Results:")
print(f" Macro F1: {ate_metrics.get('macro_f1', 0.0):.3f}")
print(f" Macro Precision: {ate_metrics.get('macro_precision', 0.0):.3f}")
print(f" Macro Recall: {ate_metrics.get('macro_recall', 0.0):.3f}")
print(f" Micro F1: {ate_metrics.get('micro_f1', 0.0):.3f}")
print(f" Exact Match: {ate_metrics.get('exact_match_ratio', 0.0):.3f}")
print(f" Success Rate: {ate_metrics.get('success_rate', 0.0):.3f}")
print(f" Total Samples: {ate_metrics.get('total_samples', 0)}")
print(f"{'='*60}")
return {
"ate_results": ate_results,
"ate_metrics": ate_metrics,
}
def run_mcq_evaluation(self) -> Dict[str, Any]:
"""
Run evaluation on MCQ dataset only.
Returns:
Dictionary containing MCQ evaluation results and metrics
"""
print("Starting CTI-MCQ evaluation...")
print(f"Output directory: {self.output_dir}")
# Load and filter datasets
ate_df, mcq_df = self.load_datasets()
mcq_filtered = self.filter_dataset(mcq_df, "mcq")
# Evaluate MCQ dataset and calculate metrics
mcq_results = self.evaluate_mcq_dataset(mcq_filtered)
mcq_metrics = self.calculate_mcq_metrics(mcq_results)
# Save results to CSV files (MCQ only)
self.save_results_to_csv(mcq_results, "mcq")
self.save_evaluation_summary(mcq_metrics, "mcq")
# Print summary of evaluation results
print(f"\n{'='*60}")
print("CTI-MCQ EVALUATION SUMMARY")
print(f"{'='*60}")
print(f"CTI-MCQ Results:")
print(f" Accuracy: {mcq_metrics.get('accuracy', 0.0):.3f}")
print(f" F1 Macro: {mcq_metrics.get('f1_macro', 0.0):.3f}")
print(f" Success Rate: {mcq_metrics.get('success_rate', 0.0):.3f}")
print(f" Total Samples: {mcq_metrics.get('total_samples', 0)}")
print(f"{'='*60}")
return {
"mcq_results": mcq_results,
"mcq_metrics": mcq_metrics,
}
def main():
"""Main function to run the evaluation."""
import argparse
parser = argparse.ArgumentParser(
description="Evaluate Retrieval Supervisor on CTI Bench dataset"
)
parser.add_argument(
"--dataset-dir",
default="cti_bench/datasets",
help="Directory containing CTI Bench datasets",
)
parser.add_argument(
"--output-dir",
default="cti_bench/eval_output",
help="Directory to save evaluation results",
)
parser.add_argument(
"--kb-path",
default="./cyber_knowledge_base",
help="Path to cyber knowledge base",
)
parser.add_argument(
"--llm-model", default="google_genai:gemini-2.0-flash", help="LLM model to use"
)
parser.add_argument(
"--max-samples",
type=int,
help="Maximum number of samples to evaluate (for testing)",
)
args = parser.parse_args()
try:
# Initialize supervisor
print("Initializing Retrieval Supervisor...")
supervisor = RetrievalSupervisor(
llm_model=args.llm_model, kb_path=args.kb_path, max_iterations=3
)
# Initialize evaluator
evaluator = CTIBenchEvaluator(
supervisor=supervisor,
dataset_dir=args.dataset_dir,
output_dir=args.output_dir,
)
# Run evaluation
results = evaluator.run_full_evaluation()
print("Evaluation completed successfully!")
except Exception as e:
print(f"Evaluation failed: {e}")
import traceback
traceback.print_exc()
if __name__ == "__main__":
main()
|