File size: 12,074 Bytes
223ef32
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
"""
CTI Bench Evaluation Runner

This script provides a command-line interface to run the CTI Bench evaluation
with your Retrieval Supervisor system.
"""

import argparse
import os
import sys
from pathlib import Path
from dotenv import load_dotenv
from huggingface_hub import login as huggingface_login

# Add the project root to Python path so we can import from src
project_root = Path(__file__).parent.parent.parent
sys.path.insert(0, str(project_root))

from src.evaluator.cti_bench_evaluator import CTIBenchEvaluator
from src.agents.retrieval_supervisor.supervisor import RetrievalSupervisor


def setup_environment(
    dataset_dir: str = "cti_bench/datasets", output_dir: str = "cti_bench/eval_output"
):
    """Set up the environment for evaluation."""
    load_dotenv()

    # Load environment variables
    if os.getenv("GOOGLE_API_KEY"):
        os.environ["GOOGLE_API_KEY"] = os.getenv("GOOGLE_API_KEY")

    if os.getenv("GROQ_API_KEY"):
        os.environ["GROQ_API_KEY"] = os.getenv("GROQ_API_KEY")

    if os.getenv("OPENAI_API_KEY"):
        os.environ["OPENAI_API_KEY"] = os.getenv("OPENAI_API_KEY")

    if os.getenv("HF_TOKEN"):
        huggingface_login(token=os.getenv("HF_TOKEN"))

    # Create necessary directories
    os.makedirs(dataset_dir, exist_ok=True)
    os.makedirs(output_dir, exist_ok=True)

    # Check if datasets exist
    dataset_path = Path(dataset_dir)
    ate_file = dataset_path / "cti-ate.tsv"
    mcq_file = dataset_path / "cti-mcq.tsv"

    if not ate_file.exists() or not mcq_file.exists():
        print("ERROR: CTI Bench dataset files not found!")
        print(f"Expected files:")
        print(f"  - {ate_file}")
        print(f"  - {mcq_file}")
        print(
            "Please download the CTI Bench dataset and place the files in the correct location."
        )
        sys.exit(1)

    return True


def run_evaluation_quick_test(
    dataset_dir: str,
    output_dir: str,
    llm_model: str,
    kb_path: str,
    max_iterations: int,
    num_samples: int = 2,
    datasets: str = "all",
):
    """Run a quick test with a few samples."""
    print("Running quick test evaluation...")

    try:
        # Initialize supervisor
        supervisor = RetrievalSupervisor(
            llm_model=llm_model,
            kb_path=kb_path,
            max_iterations=max_iterations,
        )

        # Initialize evaluator
        evaluator = CTIBenchEvaluator(
            supervisor=supervisor,
            dataset_dir=dataset_dir,
            output_dir=output_dir,
        )

        # Load datasets
        ate_df, mcq_df = evaluator.load_datasets()
        ate_filtered = evaluator.filter_dataset(ate_df, "ate")
        mcq_filtered = evaluator.filter_dataset(mcq_df, "mcq")

        # Test with specified number of samples
        print(f"Testing with first {num_samples} samples of each dataset...")

        ate_sample = ate_filtered.head(num_samples)
        mcq_sample = mcq_filtered.head(num_samples)

        # Run evaluations based on dataset selection
        ate_results = None
        mcq_results = None
        ate_metrics = None
        mcq_metrics = None

        if datasets in ["ate", "all"]:
            print(f"\nEvaluating ATE dataset...")
            ate_results = evaluator.evaluate_ate_dataset(ate_sample)
            ate_metrics = evaluator.calculate_ate_metrics(ate_results)

        if datasets in ["mcq", "all"]:
            print(f"\nEvaluating MCQ dataset...")
            mcq_results = evaluator.evaluate_mcq_dataset(mcq_sample)
            mcq_metrics = evaluator.calculate_mcq_metrics(mcq_results)

        # Print results
        print("\nQuick Test Results:")
        if ate_metrics:
            print(f"ATE - Macro F1: {ate_metrics.get('macro_f1', 0.0):.3f}")
            print(f"ATE - Success Rate: {ate_metrics.get('success_rate', 0.0):.3f}")
        if mcq_metrics:
            print(f"MCQ - Accuracy: {mcq_metrics.get('accuracy', 0.0):.3f}")
            print(f"MCQ - Success Rate: {mcq_metrics.get('success_rate', 0.0):.3f}")

        return True

    except Exception as e:
        print(f"Quick test failed: {e}")
        import traceback

        traceback.print_exc()
        return False


def run_csv_metrics_calculation(
    csv_path: str,
    output_dir: str,
    model_name: str = None,
):
    """Calculate metrics from existing CSV results file."""
    print("Calculating metrics from existing CSV file...")

    try:
        # Initialize evaluator (supervisor not needed for CSV processing)
        evaluator = CTIBenchEvaluator(
            supervisor=None,  # Not needed for CSV processing
            dataset_dir="",  # Not needed for CSV processing
            output_dir=output_dir,
        )

        # Calculate metrics from CSV
        results = evaluator.calculate_metrics_from_csv(
            csv_path=csv_path,
            model_name=model_name,
        )

        print("CSV metrics calculation completed successfully!")
        return True

    except Exception as e:
        print(f"CSV metrics calculation failed: {e}")
        import traceback

        traceback.print_exc()
        return False


def run_full_evaluation(
    dataset_dir: str,
    output_dir: str,
    llm_model: str,
    kb_path: str,
    max_iterations: int,
    datasets: str = "all",
):
    """Run the complete evaluation."""
    print("Running full evaluation...")

    try:
        # Initialize supervisor
        supervisor = RetrievalSupervisor(
            llm_model=llm_model,
            kb_path=kb_path,
            max_iterations=max_iterations,
        )

        # Initialize evaluator
        evaluator = CTIBenchEvaluator(
            supervisor=supervisor,
            dataset_dir=dataset_dir,
            output_dir=output_dir,
        )

        # Run full evaluation based on dataset selection
        if datasets == "all":
            results = evaluator.run_full_evaluation()
        elif datasets == "ate":
            results = evaluator.run_ate_evaluation()
        elif datasets == "mcq":
            results = evaluator.run_mcq_evaluation()
        else:
            print(f"Invalid dataset selection: {datasets}")
            return False

        print("Full evaluation completed successfully!")
        return True

    except Exception as e:
        print(f"Full evaluation failed: {e}")
        import traceback

        traceback.print_exc()
        return False


def test_supervisor_connection(llm_model: str, kb_path: str):
    """Test the supervisor connection."""
    try:
        supervisor = RetrievalSupervisor(
            llm_model=llm_model,
            kb_path=kb_path,
            max_iterations=1,
        )
        response = supervisor.invoke_direct_query("Test query: What is T1071?")
        print("Supervisor connection successful!")
        print(f"Sample response length: {len(str(response))} characters")
        return True
    except Exception as e:
        print(f"Supervisor connection failed: {e}")
        return False


def parse_arguments():
    """Parse command line arguments."""
    parser = argparse.ArgumentParser(
        description="CTI Bench Evaluation Runner",
        formatter_class=argparse.RawDescriptionHelpFormatter,
        epilog="""
Examples:
  # Run quick test with default settings
  python cti_bench_evaluation.py --mode quick

  # Run full evaluation with custom settings
  python cti_bench_evaluation.py --mode full --llm-model google_genai:gemini-2.0-flash --max-iterations 5

  # Run full evaluation on ATE dataset only
  python cti_bench_evaluation.py --mode full --datasets ate

  # Run full evaluation on MCQ dataset only
  python cti_bench_evaluation.py --mode full --datasets mcq

  # Test supervisor connection
  python cti_bench_evaluation.py --mode test

  # Run quick test with 5 samples
  python cti_bench_evaluation.py --mode quick --num-samples 5

  # Calculate metrics from existing CSV file
  python cti_bench_evaluation.py --mode csv --csv-path cti_bench/eval_output/cti-ate_gemini-2.0-flash_20251024_193022.csv

  # Calculate metrics from CSV with custom model name
  python cti_bench_evaluation.py --mode csv --csv-path results.csv --csv-model-name my-model
        """,
    )

    parser.add_argument(
        "--mode",
        choices=["quick", "full", "test", "csv"],
        required=True,
        help="Evaluation mode: 'quick' for quick test, 'full' for complete evaluation, 'test' for connection test, 'csv' for processing existing CSV files",
    )

    parser.add_argument(
        "--datasets",
        choices=["ate", "mcq", "all"],
        default="all",
        help="Which datasets to evaluate: 'ate' for CTI-ATE only, 'mcq' for CTI-MCQ only, 'all' for both (default: all)",
    )

    parser.add_argument(
        "--dataset-dir",
        default="cti_bench/datasets",
        help="Directory containing CTI Bench dataset files (default: cti_bench/datasets)",
    )

    parser.add_argument(
        "--output-dir",
        default="cti_bench/eval_output",
        help="Directory for evaluation output files (default: cti_bench/eval_output)",
    )

    parser.add_argument(
        "--llm-model",
        default="google_genai:gemini-2.0-flash",
        help="LLM model to use (default: google_genai:gemini-2.0-flash)",
    )

    parser.add_argument(
        "--kb-path",
        default="./cyber_knowledge_base",
        help="Path to knowledge base (default: ./cyber_knowledge_base)",
    )

    parser.add_argument(
        "--max-iterations",
        type=int,
        default=3,
        help="Maximum iterations for supervisor (default: 3)",
    )

    parser.add_argument(
        "--num-samples",
        type=int,
        default=2,
        help="Number of samples for quick test (default: 2)",
    )

    # CSV processing arguments
    parser.add_argument(
        "--csv-path",
        help="Path to existing CSV results file (required for csv mode)",
    )

    parser.add_argument(
        "--csv-model-name",
        help="Model name to use in summary (optional, will be extracted from filename if not provided)",
    )

    return parser.parse_args()


def main():
    """Main function."""
    args = parse_arguments()

    print("CTI Bench Evaluation Runner")
    print("=" * 50)

    # Setup environment (skip dataset validation for CSV mode)
    if args.mode != "csv":
        if not setup_environment(args.dataset_dir, args.output_dir):
            return
    else:
        # For CSV mode, just create output directory
        os.makedirs(args.output_dir, exist_ok=True)

    # Execute based on mode
    if args.mode == "quick":
        success = run_evaluation_quick_test(
            dataset_dir=args.dataset_dir,
            output_dir=args.output_dir,
            llm_model=args.llm_model,
            kb_path=args.kb_path,
            max_iterations=args.max_iterations,
            num_samples=args.num_samples,
            datasets=args.datasets,
        )
    elif args.mode == "full":
        success = run_full_evaluation(
            dataset_dir=args.dataset_dir,
            output_dir=args.output_dir,
            llm_model=args.llm_model,
            kb_path=args.kb_path,
            max_iterations=args.max_iterations,
            datasets=args.datasets,
        )
    elif args.mode == "test":
        success = test_supervisor_connection(
            llm_model=args.llm_model, kb_path=args.kb_path
        )
    elif args.mode == "csv":
        # Validate CSV mode arguments
        if not args.csv_path:
            print("ERROR: --csv-path is required for csv mode")
            sys.exit(1)

        # Check if CSV file exists
        if not os.path.exists(args.csv_path):
            print(f"ERROR: CSV file not found: {args.csv_path}")
            sys.exit(1)

        success = run_csv_metrics_calculation(
            csv_path=args.csv_path,
            output_dir=args.output_dir,
            model_name=args.csv_model_name,
        )

    if success:
        print("\nOperation completed successfully!")
    else:
        print("\nOperation failed!")
        sys.exit(1)


if __name__ == "__main__":
    main()