File size: 10,368 Bytes
e4932aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
#!/usr/bin/env python3
"""

Run script for the simple integrated pipeline



Usage examples:

    python run_simple.py sample_log.json

    python run_simple.py /path/to/mordor_dataset/credential_access_log.json

    python run_simple.py sample_log.json "Focus on lateral movement techniques"

"""

import os
import sys
from pathlib import Path
from dotenv import load_dotenv
from huggingface_hub import login as huggingface_login

# Add paths for imports
# We're in src/scripts/, so go up to project root
project_root = Path(__file__).parent.parent.parent
sys.path.insert(0, str(project_root))

# Import the simple pipeline from src/full_pipeline/
try:
    from src.full_pipeline.simple_pipeline import analyze_log_file
except ImportError as e:
    print(f"Import error: {e}")
    print("Make sure simple_pipeline.py is in src/full_pipeline/ directory")
    print(f"Current working directory: {os.getcwd()}")
    print(f"Script location: {Path(__file__).parent}")
    sys.exit(1)


def setup_environment(model_name: str = "google_genai:gemini-2.0-flash"):
    """

    Setup environment variables and check requirements.



    Args:

        model_name: Name of the model to validate environment for

    """
    load_dotenv()
    # Load environment variables
    if os.getenv("GOOGLE_API_KEY"):
        os.environ["GOOGLE_API_KEY"] = os.getenv("GOOGLE_API_KEY")

    if os.getenv("GROQ_API_KEY"):
        os.environ["GROQ_API_KEY"] = os.getenv("GROQ_API_KEY")

    if os.getenv("OPENAI_API_KEY"):
        os.environ["OPENAI_API_KEY"] = os.getenv("OPENAI_API_KEY")

    if os.getenv("HF_TOKEN"):
        huggingface_login(token=os.getenv("HF_TOKEN"))

    # Determine required environment variable based on model name
    if "google_genai" in model_name or "gemini" in model_name:
        required_env_var = "GOOGLE_API_KEY"
    elif "groq" in model_name or "gpt-oss" in model_name or "llama" in model_name:
        required_env_var = "GROQ_API_KEY"
    elif "openai" in model_name or "gpt-" in model_name:
        required_env_var = "OPENAI_API_KEY"
    else:
        print(
            f"[WARNING] Unknown model '{model_name}', using default environment checks"
        )
        required_env_var = "GOOGLE_API_KEY"

    if not os.getenv(required_env_var):
        print(f"Error: {required_env_var} not found in environment variables")
        print(f"Required for model: {model_name}")
        print(f"Please set it in your .env file or environment.")
        print("\nAvailable models and their requirements:")
        print("  ✓ google_genai:gemini-2.0-flash: requires GOOGLE_API_KEY")
        print("  ✓ google_genai:gemini-1.5-flash: requires GOOGLE_API_KEY")
        print("  ✓ groq:gpt-oss-120b: requires GROQ_API_KEY")
        print("  ✓ groq:gpt-oss-20b: requires GROQ_API_KEY")
        print("  ✓ groq:llama-3.1-8b-instant: requires GROQ_API_KEY")
        print("  ✓ groq:llama-3.3-70b-versatile: requires GROQ_API_KEY")
        sys.exit(1)

    print(f"Environment setup complete. Using {required_env_var} for {model_name}")


def validate_inputs(log_file: str):
    """Validate input parameters."""
    if not os.path.exists(log_file):
        print(f"Error: Log file not found: {log_file}")

        # Suggest common locations - check from project root
        os.chdir(project_root)
        suggestions = []
        if Path("mordor_dataset").exists():
            suggestions.append("./mordor_dataset/")
        if Path("../mordor_dataset").exists():
            suggestions.append("../mordor_dataset/")

        if suggestions:
            print("Try looking in these directories:")
            for suggestion in suggestions:
                json_files = list(Path(suggestion).glob("*.json"))
                if json_files:
                    print(f"  {suggestion}")
                    for f in json_files[:3]:  # Show first 3 files
                        print(f"    - {f.name}")
                    if len(json_files) > 3:
                        print(f"    ... and {len(json_files) - 3} more files")

        sys.exit(1)

    # Check if it's a JSON file
    if not log_file.endswith(".json"):
        print(f"Warning: File doesn't have .json extension: {log_file}")
        response = input("Continue anyway? (y/n): ")
        if response.lower() != "y":
            sys.exit(1)


def main():
    """Main entry point."""
    # Check arguments
    if len(sys.argv) < 2:
        print("Cybersecurity Log Analysis Pipeline")
        print("=" * 50)
        print("Usage: python run_simple_pipeline.py <log_file> [options]")
        print("")
        print("Arguments:")
        print("  log_file              Path to the log file to analyze")
        print("")
        print("Options:")
        print('  --query "TEXT"        Optional query for additional context')
        print(
            "  --model MODEL_NAME    Model to use for analysis (default: google_genai:gemini-2.0-flash)"
        )
        print("  --temp TEMPERATURE    Temperature for model generation (default: 0.1)")
        print(
            "  --output-dir DIR      Output directory for results (default: mordor_dataset/eval_output)"
        )
        print("")
        print("Examples:")
        print("  python run_simple_pipeline.py sample_log.json")
        print(
            "  python run_simple_pipeline.py mordor_dataset/datasets/credential_access.json"
        )
        print(
            "  python run_simple_pipeline.py sample.json --query 'Focus on privilege escalation'"
        )
        print("  python run_simple_pipeline.py sample.json --model gpt-oss-120b")
        print(
            "  python run_simple_pipeline.py sample.json --model llama-3.1-8b-instant --temp 0.2"
        )
        print("  python run_simple_pipeline.py sample.json --output-dir custom_output")
        print("")
        print("Available models:")
        print("  - google_genai:gemini-2.0-flash")
        print("  - google_genai:gemini-1.5-flash")
        print("  - groq:gpt-oss-120b")
        print("  - groq:gpt-oss-20b")
        print("  - groq:llama-3.1-8b-instant")
        print("  - groq:llama-3.3-70b-versatile")
        print("")

        # Try to find sample files from project root
        os.chdir(project_root)
        sample_files = []
        for pattern in ["*.json", "mordor_dataset/*.json", "../mordor_dataset/*.json"]:
            sample_files.extend(Path(".").glob(pattern))

        if sample_files:
            print("Available log files found:")
            for f in sample_files[:5]:
                print(f"  {f}")
            if len(sample_files) > 5:
                print(f"  ... and {len(sample_files) - 5} more files")

        sys.exit(1)

    # Parse arguments
    log_file = sys.argv[1]
    query = None
    model_name = "google_genai:gemini-2.0-flash"
    temperature = 0.1
    output_dir = "mordor_dataset/eval_output"

    i = 2
    while i < len(sys.argv):
        if sys.argv[i] == "--query" and i + 1 < len(sys.argv):
            query = sys.argv[i + 1]
            i += 2
        elif sys.argv[i] == "--model" and i + 1 < len(sys.argv):
            model_name = sys.argv[i + 1]
            i += 2
        elif sys.argv[i] == "--temp" and i + 1 < len(sys.argv):
            try:
                temperature = float(sys.argv[i + 1])
            except ValueError:
                print(f"Error: Invalid temperature value: {sys.argv[i + 1]}")
                sys.exit(1)
            i += 2
        elif sys.argv[i] == "--output-dir" and i + 1 < len(sys.argv):
            output_dir = sys.argv[i + 1]
            i += 2
        else:
            # Backward compatibility: treat as query if no flag
            if not query:
                query = sys.argv[i]
            i += 1

    print("Cybersecurity Multi-Agent Pipeline")
    print("=" * 50)
    print(f"Log file: {log_file}")
    print(f"Model: {model_name}")
    print(f"Temperature: {temperature}")
    print(f"Output directory: {output_dir}")
    print(f"User query: {query or 'None'}")
    print("")

    # Setup and validation
    setup_environment(model_name)
    validate_inputs(log_file)

    # Run the pipeline
    try:
        print("Initializing pipeline...")
        # Extract tactic from file path if it's in a subdirectory
        tactic = None
        log_path = Path(log_file)
        if log_path.parent.name != "mordor_dataset":
            tactic = log_path.parent.name

        # Create subdirectories within the output directory
        analysis_dir = os.path.join(output_dir, "analysis")
        final_response_dir = os.path.join(output_dir, "final_response")

        # Ensure output directories exist
        os.makedirs(analysis_dir, exist_ok=True)
        os.makedirs(final_response_dir, exist_ok=True)

        final_state = analyze_log_file(
            log_file,
            query,
            tactic,
            model_name=model_name,
            temperature=temperature,
            log_agent_output_dir=analysis_dir,
            response_agent_output_dir=final_response_dir,
        )
        print(final_state["markdown_report"])
        print("\nPipeline execution completed successfully!")

    except KeyboardInterrupt:
        print("\nPipeline interrupted by user.")
        sys.exit(0)

    except Exception as e:
        print(f"\nPipeline failed with error: {e}")

        # Provide helpful debugging info
        print("\nDebugging information:")
        print(f"  - Working directory: {os.getcwd()}")
        print(f"  - Log file exists: {os.path.exists(log_file)}")
        print(f"  - Python path: {sys.path[0]}")

        # Check for common issues
        if "knowledge base" in str(e).lower():
            print("\nPossible solution:")
            print(
                "  Make sure ./cyber_knowledge_base directory exists and is properly initialized"
            )
        elif "import" in str(e).lower():
            print("\nPossible solution:")
            print(
                "  Make sure you're running from the correct directory with access to src/"
            )

        sys.exit(1)


if __name__ == "__main__":
    main()