File size: 35,454 Bytes
e4932aa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 |
import os
import re
import time
from typing import List, Dict, Any, Optional, Sequence, Annotated
from typing_extensions import TypedDict
from langchain.chat_models import init_chat_model
from langchain_core.prompts import ChatPromptTemplate
from langchain_tavily import TavilySearch
from langgraph.graph import END, StateGraph, START
from langgraph.graph.message import add_messages
from langchain_core.messages import BaseMessage, HumanMessage, AIMessage
# from langsmith.integrations.otel import configure
from langsmith import traceable, Client, get_current_run_tree
from dotenv import load_dotenv
from src.agents.cti_agent.config import (
MODEL_NAME,
CTI_SEARCH_CONFIG,
CTI_PLANNER_PROMPT,
CTI_REGEX_PATTERN,
REPLAN_PROMPT,
)
from src.agents.cti_agent.cti_tools import CTITools
load_dotenv()
# configure(
# project_name=os.getenv("LANGSMITH_PROJECT", "cti-agent-project"),
# api_key=os.getenv("LANGSMITH_API_KEY")
# )
ls_client = Client(api_key=os.getenv("LANGSMITH_API_KEY"))
class CTIState(TypedDict):
"""State definition for CTI agent for ReWOO planning."""
task: str
plan_string: str
steps: List
results: dict
structured_intelligence: dict
result: str
replans: int # Track number of replans
last_step_quality: str # "correct", "ambiguous", or "incorrect"
correction_reason: str # Why we need to replan
# Messages-based state for supervisor compatibility
class CTIMessagesState(TypedDict):
messages: Annotated[Sequence[BaseMessage], add_messages]
class CTIAgent:
"""CTI Agent with specialized threat intelligence tools."""
def __init__(self):
"""Initialize the CTI Agent with LLM and tools."""
self.llm = init_chat_model(
MODEL_NAME,
temperature=0.1,
)
# Initialize specialized search for CTI
search_config = {**CTI_SEARCH_CONFIG, "api_key": os.getenv("TAVILY_API_KEY")}
self.cti_search = TavilySearch(**search_config)
# Initialize CTI tools
self.cti_tools = CTITools(self.llm, self.cti_search)
# Create the planner
prompt_template = ChatPromptTemplate.from_messages(
[("user", CTI_PLANNER_PROMPT)]
)
self.planner = prompt_template | self.llm
# Build the internal CTI graph (task-based)
self.app = self._build_graph()
# Build a messages-based wrapper graph for supervisor compatibility
self.agent = self._build_messages_graph()
@traceable(name="cti_planner")
def _get_plan(self, state: CTIState) -> Dict[str, Any]:
"""
Planner node: Creates a step-by-step CTI research plan.
Args:
state: Current state containing the task
Returns:
Dictionary with extracted steps and plan string
"""
task = state["task"]
result = self.planner.invoke({"task": task})
result_text = result.content if hasattr(result, "content") else str(result)
matches = re.findall(CTI_REGEX_PATTERN, result_text)
return {"steps": matches, "plan_string": result_text}
def _get_current_task(self, state: CTIState) -> Optional[int]:
"""
Get the current task number to execute.
Args:
state: Current state
Returns:
Task number (1-indexed) or None if all tasks completed
"""
if "results" not in state or state["results"] is None:
return 1
if len(state["results"]) == len(state["steps"]):
return None
else:
return len(state["results"]) + 1
def _log_tool_metrics(self, tool_name: str, execution_time: float, success: bool, result_quality: str = None):
"""Log custom metrics to LangSmith."""
try:
current_run = get_current_run_tree()
if current_run:
ls_client.create_feedback(
run_id=current_run.id,
key="tool_performance",
score=1.0 if success else 0.0,
value={
"tool": tool_name,
"execution_time": execution_time,
"success": success,
"quality": result_quality
}
)
else:
# Log as project-level feedback if no active run
ls_client.create_feedback(
project_id=os.getenv("LANGSMITH_PROJECT", "cti-agent-project"),
key="tool_performance",
score=1.0 if success else 0.0,
value={
"tool": tool_name,
"execution_time": execution_time,
"success": success,
"quality": result_quality
}
)
except Exception as e:
print(f"Failed to log metrics: {e}")
@traceable(name="cti_tool_execution")
def _tool_execution(self, state: CTIState) -> Dict[str, Any]:
"""
Executor node: Executes the specialized CTI tools for the current step.
Args:
state: Current state
Returns:
Dictionary with updated results
"""
_step = self._get_current_task(state)
_, step_name, tool, tool_input = state["steps"][_step - 1]
_results = (state["results"].copy() or {}) if "results" in state else {}
# Replace variables in tool input
original_tool_input = tool_input
for k, v in _results.items():
tool_input = tool_input.replace(k, str(v))
start_time = time.time()
success = False
# Execute the appropriate specialized tool
try:
if tool == "SearchCTIReports":
result = self.cti_tools.search_cti_reports(tool_input)
elif tool == "ExtractURL":
if "," in original_tool_input:
parts = original_tool_input.split(",", 1)
search_result_ref = parts[0].strip()
index_part = parts[1].strip()
else:
search_result_ref = original_tool_input.strip()
index_part = "0"
# Extract index from index_part
index = 0
if "second" in index_part.lower():
index = 1
elif "third" in index_part.lower():
index = 2
elif index_part.isdigit():
index = int(index_part)
elif "1" in index_part:
index = 1
# Get the actual search result from previous results
if search_result_ref in _results:
search_result = _results[search_result_ref]
result = self.cti_tools.extract_url_from_search(
search_result, index
)
else:
result = f"Error: Could not find search result {search_result_ref} in previous results. Available keys: {list(_results.keys())}"
elif tool == "FetchReport":
result = self.cti_tools.fetch_report(tool_input)
elif tool == "ExtractIOCs":
result = self.cti_tools.extract_iocs(tool_input)
elif tool == "IdentifyThreatActors":
result = self.cti_tools.identify_threat_actors(tool_input)
elif tool == "ExtractMITRETechniques":
# Parse framework parameter if provided
if "," in original_tool_input:
parts = original_tool_input.split(",", 1)
content_ref = parts[0].strip()
framework = parts[1].strip()
else:
content_ref = original_tool_input.strip()
framework = "Enterprise" # Default framework
# Get content from previous results or use directly
if content_ref in _results:
content = _results[content_ref]
else:
content = tool_input
result = self.cti_tools.extract_mitre_techniques(content, framework)
elif tool == "LLM":
llm_result = self.llm.invoke(tool_input)
result = (
llm_result.content
if hasattr(llm_result, "content")
else str(llm_result)
)
else:
result = f"Unknown tool: {tool}"
except Exception as e:
result = f"Error executing {tool}: {str(e)}"
_results[step_name] = str(result)
success = True
execution_time = time.time() - start_time
# Log metrics
self._log_tool_metrics(tool, execution_time, success)
return {"results": _results}
@traceable(name="cti_solver")
def _solve(self, state: CTIState) -> Dict[str, str]:
"""
Solver node: Synthesizes the CTI findings into a comprehensive report.
Args:
state: Current state with all execution results
Returns:
Dictionary with the final CTI intelligence report
"""
# Build comprehensive context with FULL results
plan = ""
full_results_context = "\n\n" + "=" * 80 + "\n"
full_results_context += "COMPLETE EXECUTION RESULTS FOR ANALYSIS:\n"
full_results_context += "=" * 80 + "\n\n"
_results = state.get("results", {}) or {}
for idx, (plan_desc, step_name, tool, tool_input) in enumerate(
state["steps"], 1
):
# Replace variable references in inputs for display
display_input = tool_input
for k, v in _results.items():
display_input = display_input.replace(k, f"<{k}>")
# Build the plan summary (truncated for readability)
plan += f"\nStep {idx}: {plan_desc}\n"
plan += f"{step_name} = {tool}[{display_input}]\n"
# Add result summary to plan (truncated)
if step_name in _results:
result_preview = str(_results[step_name])[:800]
plan += f"Result Preview: {result_preview}...\n"
else:
plan += "Result: Not executed\n"
# Add FULL result to separate context section
if step_name in _results:
full_results_context += f"\n{'─'*80}\n"
full_results_context += f"STEP {idx}: {step_name} ({tool})\n"
full_results_context += f"{'─'*80}\n"
full_results_context += f"INPUT: {display_input}\n\n"
full_results_context += f"FULL OUTPUT:\n{_results[step_name]}\n"
# Create solver prompt with full context
prompt = f"""You are a Cyber Threat Intelligence analyst creating a final report.
You have access to COMPLETE results from all CTI research steps below.
IMPORTANT:
- Use the FULL EXECUTION RESULTS section below - it contains complete, untruncated data
- Extract ALL specific IOCs, technique IDs, and actor details from the full results
- Do not say "Report contains X IOCs" - actually LIST them from the results
- If results contain structured data (JSON), parse and present it clearly
{full_results_context}
{'='*80}
RESEARCH PLAN SUMMARY:
{'='*80}
{plan}
{'='*80}
ORIGINAL TASK: {state['task']}
{'='*80}
Now create a comprehensive threat intelligence report following this structure:
## Intelligence Sources
[List the specific reports analyzed with title, source, and date]
## Threat Actors & Attribution
[Present actual threat actor names, aliases, and campaign names found]
[Include specific attribution details and confidence levels]
## MITRE ATT&CK Techniques Identified
[List specific technique IDs (T####) and names found in the reports]
[Provide brief description of what each technique means and why it's relevant]
## Indicators of Compromise (IOCs) Retrieved
[Present actual IOCs extracted from reports - be specific and comprehensive]
### IP Addresses
[List all IPs found, or state "None identified"]
### Domains
[List all domains found, or state "None identified"]
### File Hashes
[List all hashes with types, or state "None identified"]
### URLs
[List all malicious URLs, or state "None identified"]
### Email Addresses
[List all email patterns, or state "None identified"]
### File Names
[List all malicious file names, or state "None identified"]
### Other Indicators
[List any other indicators like registry keys, mutexes, etc.]
## Attack Patterns & Campaign Details
[Describe specific attack flows and methods detailed in reports]
[Include timeline information if available]
[Note targeting information - industries, regions, etc.]
## Key Findings Summary
[Provide 3-5 bullet points of the most critical findings]
## Intelligence Gaps
[Note what information was NOT available in the reports]
---
**CRITICAL INSTRUCTIONS:**
1. Extract data from the FULL EXECUTION RESULTS section above
2. If ExtractIOCs results are in JSON format, parse and list all IOCs
3. If IdentifyThreatActors results contain Q&A format, extract all answers
4. If ExtractMITRETechniques results contain technique IDs, list ALL of them
5. Be comprehensive - don't summarize when you have specific data
6. If you cannot find specific data in results, clearly state what's missing
"""
# Invoke LLM with context
result = self.llm.invoke(prompt)
result_text = result.content if hasattr(result, "content") else str(result)
return {"result": result_text}
# Helper method to better structure results
def _structure_results_for_solver(self, state: CTIState) -> str:
"""
Helper method to structure results in a more accessible format for the solver.
Returns:
Formatted string with categorized results
"""
_results = state.get("results", {}) or {}
structured = {
"searches": [],
"reports": [],
"iocs": [],
"actors": [],
"techniques": [],
}
# Categorize results by tool type
for step_name, result in _results.items():
# Find which tool produced this result
for _, sname, tool, _ in state["steps"]:
if sname == step_name:
if tool == "SearchCTIReports":
structured["searches"].append(
{"step": step_name, "result": result}
)
elif tool == "FetchReport":
structured["reports"].append(
{"step": step_name, "result": result}
)
elif tool == "ExtractIOCs":
structured["iocs"].append({"step": step_name, "result": result})
elif tool == "IdentifyThreatActors":
structured["actors"].append(
{"step": step_name, "result": result}
)
elif tool == "ExtractMITRETechniques":
structured["techniques"].append(
{"step": step_name, "result": result}
)
break
# Format into readable sections
output = []
if structured["iocs"]:
output.append("\n" + "=" * 80)
output.append("EXTRACTED IOCs (Indicators of Compromise):")
output.append("=" * 80)
for item in structured["iocs"]:
output.append(f"\nFrom {item['step']}:")
output.append(str(item["result"]))
if structured["actors"]:
output.append("\n" + "=" * 80)
output.append("IDENTIFIED THREAT ACTORS:")
output.append("=" * 80)
for item in structured["actors"]:
output.append(f"\nFrom {item['step']}:")
output.append(str(item["result"]))
if structured["techniques"]:
output.append("\n" + "=" * 80)
output.append("EXTRACTED MITRE ATT&CK TECHNIQUES:")
output.append("=" * 80)
for item in structured["techniques"]:
output.append(f"\nFrom {item['step']}:")
output.append(str(item["result"]))
if structured["reports"]:
output.append("\n" + "=" * 80)
output.append("FETCHED REPORTS (for context):")
output.append("=" * 80)
for item in structured["reports"]:
output.append(f"\nFrom {item['step']}:")
# Truncate report content but keep IOC sections visible
report_text = str(item["result"])
output.append(
report_text[:2000] + "..."
if len(report_text) > 2000
else report_text
)
return "\n".join(output)
def _route(self, state: CTIState) -> str:
"""
Routing function to determine next node.
Args:
state: Current state
Returns:
Next node name: "solve" or "tool"
"""
_step = self._get_current_task(state)
if _step is None:
return "solve"
else:
return "tool"
@traceable(name="cti_evaluator")
def _evaluate_result(self, state: CTIState) -> Dict[str, Any]:
"""
Evaluator node: Assesses quality of the last tool execution result.
Returns:
Dictionary with quality assessment and correction needs
"""
_step = len(state.get("results", {}))
if _step == 0:
return {"last_step_quality": "correct"}
current_step = state["steps"][_step - 1]
_, step_name, tool, tool_input = current_step
result = state["results"][step_name]
# Evaluation prompt
eval_prompt = f"""Evaluate if this CTI tool execution retrieved ACTUAL threat intelligence:
Tool: {tool}
Input: {tool_input}
Result: {result[:1000]}
Quality Criteria for Web Search:
- CORRECT: Retrieved specific IOCs, technique IDs, actor names. A website that doesn't have the name of the actor or IOCs is not sufficient.
- AMBIGUOUS: Retrieved general security content but lacks specific CTI details
- INCORRECT: Retrieved irrelevant content, errors, or marketing material
Quality Criteria for MITER Extraction:
- CORRECT: Extracted valid MITRE ATT&CK technique IDs (e.g., T1234) or tactics (e.g., Initial Access)
- AMBIGUOUS: Extracted general security terms but no valid technique IDs or tactics
- INCORRECT: Extracted irrelevant content or no valid techniques/tactics
Respond with ONLY one word: CORRECT, AMBIGUOUS, or INCORRECT
If AMBIGUOUS or INCORRECT, also provide a brief reason (1 sentence).
Format: QUALITY: [reason if needed]"""
eval_result = self.llm.invoke(eval_prompt)
eval_text = (
eval_result.content if hasattr(eval_result, "content") else str(eval_result)
)
# Parse evaluation
quality = "correct"
reason = ""
if "INCORRECT" in eval_text.upper():
quality = "incorrect"
reason = eval_text.split("INCORRECT:")[-1].strip()[:200]
elif "AMBIGUOUS" in eval_text.upper():
quality = "ambiguous"
reason = eval_text.split("AMBIGUOUS:")[-1].strip()[:200]
return {"last_step_quality": quality, "correction_reason": reason}
def _replan(self, state: CTIState) -> Dict[str, Any]:
"""
Replanner node: Creates corrected plan when results are inadequate.
"""
replans = state.get("replans", 0)
# Limit replanning attempts
if replans >= 3:
return {"replans": replans, "replan_status": "max_attempts_reached"}
_step = len(state.get("results", {}))
failed_step = state["steps"][_step - 1]
_, step_name, tool, tool_input = failed_step
# Store replan context for display
replan_context = {
"failed_step_number": _step,
"failed_tool": tool,
"failed_input": tool_input[:100],
"problem": state.get("correction_reason", "Quality issues"),
"original_plan": failed_step[0],
}
replan_prompt = REPLAN_PROMPT.format(
task=state["task"],
failed_step=failed_step[0],
step_name=step_name,
tool=tool,
tool_input=tool_input,
results=state["results"][step_name][:500],
problem=state["correction_reason"],
completed_steps=self._format_completed_steps(state),
step=_step,
)
replan_result = self.llm.invoke(replan_prompt)
replan_text = (
replan_result.content
if hasattr(replan_result, "content")
else str(replan_result)
)
# Store the replan thinking for display
replan_context["replan_thinking"] = (
replan_text[:500] + "..." if len(replan_text) > 500 else replan_text
)
# Parse new step
import re
matches = re.findall(CTI_REGEX_PATTERN, replan_text)
if matches:
new_plan, new_step_name, new_tool, new_tool_input = matches[0]
# Store the correction details
replan_context["corrected_plan"] = new_plan
replan_context["corrected_tool"] = new_tool
replan_context["corrected_input"] = new_tool_input[:100]
replan_context["success"] = True
# Replace the failed step with corrected version
new_steps = state["steps"].copy()
new_steps[_step - 1] = matches[0]
# Remove the failed result so it gets re-executed
new_results = state["results"].copy()
del new_results[step_name]
return {
"steps": new_steps,
"results": new_results,
"replans": replans + 1,
"replan_context": replan_context,
}
else:
replan_context["success"] = False
replan_context["error"] = "Failed to parse corrected plan"
return {"replans": replans + 1, "replan_context": replan_context}
def _format_completed_steps(self, state: CTIState) -> str:
"""Helper to format completed steps for replanning context."""
output = []
for step in state["steps"][: len(state.get("results", {}))]:
plan, step_name, tool, tool_input = step
if step_name in state["results"]:
output.append(f"{step_name} = {tool}[{tool_input}] ✓")
return "\n".join(output)
def _route_after_tool(self, state: CTIState) -> str:
"""Route to evaluator only after specific tools that retrieve external content."""
_step = len(state.get("results", {}))
if _step == 0:
return "evaluate"
current_step = state["steps"][_step - 1]
_, step_name, tool, tool_input = current_step
tools_to_evaluate = ["SearchCTIReports", "ExtractMITRETechniques"]
if tool in tools_to_evaluate:
return "evaluate"
else:
# Skip evaluation for extraction/analysis tools
_next_step = self._get_current_task(state)
if _next_step is None:
return "solve"
else:
return "tool"
def _route_after_eval(self, state: CTIState) -> str:
"""Route based on evaluation: replan, continue, or solve."""
quality = state.get("last_step_quality", "correct")
# Check if all steps are complete
_step = self._get_current_task(state)
if quality in ["ambiguous", "incorrect"]:
# Need to replan this step
return "replan"
elif _step is None:
# All steps complete and quality is good
return "solve"
else:
# Continue to next tool
return "tool"
def _build_graph(self) -> StateGraph:
"""Build graph with corrective feedback loop."""
graph = StateGraph(CTIState)
# Add nodes
graph.add_node("plan", self._get_plan)
graph.add_node("tool", self._tool_execution)
graph.add_node("evaluate", self._evaluate_result)
graph.add_node("replan", self._replan)
graph.add_node("solve", self._solve)
# Add edges
graph.add_edge(START, "plan")
graph.add_edge("plan", "tool")
graph.add_edge("replan", "tool")
graph.add_edge("solve", END)
# Conditional routing
graph.add_conditional_edges("tool", self._route_after_tool)
graph.add_conditional_edges("evaluate", self._route_after_eval)
return graph.compile(name="cti_agent")
# --- Messages-based wrapper for supervisor ---
def _messages_node(self, state: CTIMessagesState) -> Dict[str, List[AIMessage]]:
"""Adapter node: take messages input, run CTI pipeline, return AI message.
This allows the CTI agent to plug into a messages-based supervisor.
"""
# Find the latest human message content as the task
task_text = None
for msg in reversed(state.get("messages", [])):
if isinstance(msg, HumanMessage):
task_text = msg.content
break
if not task_text and state.get("messages"):
# Fallback: use the last message content
task_text = state["messages"][-1].content
if not task_text:
task_text = "Provide cyber threat intelligence based on the context."
# Run the internal CTI graph and extract final report text
final_chunk = None
for chunk in self.app.stream({"task": task_text}):
final_chunk = chunk
content = ""
if isinstance(final_chunk, dict):
solve_part = final_chunk.get("solve", {}) if final_chunk else {}
content = solve_part.get("result", "") if isinstance(solve_part, dict) else ""
if not content:
# As a fallback, try a direct invoke to get final aggregated state
try:
agg_state = self.app.invoke({"task": task_text})
if isinstance(agg_state, dict):
content = agg_state.get("result", "") or ""
except Exception:
pass
if not content:
content = "CTI agent completed, but no final report was produced."
return {"messages": [AIMessage(content=content, name="cti_agent")]}
def _build_messages_graph(self):
"""Build a minimal messages-based wrapper graph for supervisor usage."""
graph = StateGraph(CTIMessagesState)
graph.add_node("cti_adapter", self._messages_node)
graph.add_edge(START, "cti_adapter")
graph.add_edge("cti_adapter", END)
return graph.compile(name="cti_agent")
@traceable(name="cti_agent_full_run")
def run(self, task: str) -> Dict[str, Any]:
"""
Run the CTI agent on a given task.
Args:
task: The CTI research task/question to solve
Returns:
Final state after execution with comprehensive threat intelligence
"""
run_metadata = {
"task": task,
"agent_version": "1.0",
"timestamp": time.time()
}
try:
final_state = None
for state in self.app.stream({"task": task}):
final_state = state
# Log successful completion
ls_client.create_feedback(
run_id=None,
key="run_completion",
score=1.0,
value={"status": "completed", "final_result_length": len(str(final_state))}
)
return final_state
except Exception as e:
# Log failure
ls_client.create_feedback(
run_id=None,
key="run_completion",
score=0.0,
value={"status": "failed", "error": str(e)}
)
raise
def stream(self, task: str):
"""
Stream the CTI agent execution for a given task.
Args:
task: The CTI research task/question to solve
Yields:
State updates during execution
"""
for state in self.app.stream({"task": task}):
yield state
def format_cti_output(state: Dict[str, Any]) -> str:
"""Format the CTI agent output for better readability."""
output = []
for node_name, node_data in state.items():
output.append(f"\n **{node_name.upper()} PHASE**")
output.append("-" * 80)
if node_name == "plan":
if "plan_string" in node_data:
output.append("\n**Research Plan:**")
output.append(node_data["plan_string"])
if "steps" in node_data and node_data["steps"]:
output.append("\n**Planned Steps:**")
for i, (plan, step_name, tool, tool_input) in enumerate(
node_data["steps"], 1
):
output.append(f"\n Step {i}: {plan}")
output.append(f" {step_name} = {tool}[{tool_input[:100]}...]")
elif node_name == "tool":
if "results" in node_data:
output.append("\n**Tool Execution Results:**")
for step_name, result in node_data["results"].items():
output.append(f"\n {step_name}:")
result_str = str(result)
output.append(f" {result_str}")
elif node_name == "evaluate":
# Show evaluation details
quality = node_data.get("last_step_quality", "unknown")
reason = node_data.get("correction_reason", "")
output.append(f"**Quality Assessment:** {quality.upper()}")
if reason:
output.append(f"**Reason:** {reason}")
# Determine next action based on quality
if quality in ["ambiguous", "incorrect"]:
output.append("**Decision:** Step needs correction - triggering replan")
elif quality == "correct":
output.append("**Decision:** Step quality acceptable - continuing")
else:
output.append(f"**Decision:** Quality assessment: {quality}")
elif node_name == "replan":
replans = node_data.get("replans", 0)
output.append(f"**Replan Attempt:** {replans}")
replan_context = node_data.get("replan_context", {})
if replans >= 3:
output.append("**Status:** Maximum replan attempts reached")
output.append("**Action:** Proceeding with current results")
elif replan_context:
# Show detailed replan thinking
output.append(
f"**Failed Step:** {replan_context.get('failed_step_number', 'Unknown')}"
)
output.append(
f"**Problem:** {replan_context.get('problem', 'Quality issues')}"
)
output.append(
f"**Original Tool:** {replan_context.get('failed_tool', 'Unknown')}[{replan_context.get('failed_input', '...')}]"
)
if "replan_thinking" in replan_context:
output.append(f"**Replan Analysis:**")
output.append(f" {replan_context['replan_thinking']}")
if replan_context.get("success", False):
output.append(
f"**Corrected Plan:** {replan_context.get('corrected_plan', 'Unknown')}"
)
output.append(
f"**New Tool:** {replan_context.get('corrected_tool', 'Unknown')}[{replan_context.get('corrected_input', '...')}]"
)
output.append("**Status:** Successfully generated improved plan")
output.append(
"**Action:** Step will be re-executed with new approach"
)
else:
output.append(
f"**Error:** {replan_context.get('error', 'Unknown error')}"
)
output.append("**Status:** Failed to generate valid corrected plan")
else:
output.append("**Status:** Generating improved plan...")
output.append("**Action:** Step will be re-executed with new approach")
elif node_name == "solve":
if "result" in node_data:
output.append("\n**FINAL THREAT INTELLIGENCE REPORT:**")
output.append("=" * 80)
output.append(node_data["result"])
output.append("")
return "\n".join(output)
if __name__ == "__main__":
# Example usage demonstrating the enhanced CTI capabilities
task = """Find comprehensive threat intelligence about recent ransomware attacks targeting healthcare organizations"""
print("\n" + "=" * 80)
print("CTI AGENT - STARTING ANALYSIS")
print("=" * 80)
print(f"\nTask: {task}\n")
# Initialize the agent
agent = CTIAgent()
# Stream the execution and display results
for state in agent.stream(task):
formatted_output = format_cti_output(state)
print(formatted_output)
print("\n" + "-" * 80 + "\n")
print("\nCTI ANALYSIS COMPLETED!")
print("=" * 80 + "\n")
|