Spaces:
Sleeping
Sleeping
File size: 14,470 Bytes
e4932aa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 |
#!/usr/bin/env python3
"""
Simple Integrated Pipeline - Direct connection between Log Analysis Agent and Retrieval Supervisor
This file replaces the complex full_pipeline structure with a straightforward LangGraph
that passes log analysis results directly to the retrieval supervisor.
"""
# --model groq:openai/gpt-oss-120b
import os
import sys
import time
from pathlib import Path
from typing import Dict, Any, TypedDict
from langchain.chat_models import init_chat_model
from dotenv import load_dotenv
# LangGraph imports
from langgraph.graph import StateGraph, END, START
from langchain_core.messages import HumanMessage
# Add project root to path for agent imports
# Since we're in src/full_pipeline/, go up two levels to project root
project_root = Path(__file__).parent.parent.parent
sys.path.insert(0, str(project_root))
from src.agents.log_analysis_agent.agent import LogAnalysisAgent
from src.agents.retrieval_supervisor.supervisor import RetrievalSupervisor
from src.agents.response_agent.response_agent import ResponseAgent
# Simple state for the pipeline
class PipelineState(TypedDict):
log_file: str
log_analysis_result: Dict[str, Any]
retrieval_result: Dict[str, Any]
response_analysis: Dict[str, Any]
query: str
tactic: str
markdown_report: str
def create_simple_pipeline(
model_name: str = "google_genai:gemini-2.0-flash",
temperature: float = 0.1,
max_log_analysis_iterations: int = 2,
max_retrieval_iterations: int = 2,
log_agent_output_dir: str = "analysis",
response_agent_output_dir: str = "final_response",
progress_callback=None,
):
# Initialize LLM client directly
print("\n" + "=" * 60)
print("INITIALIZING LLM CLIENT")
print("=" * 60)
print(f"Model: {model_name}")
print(f"Temperature: {temperature}")
print("=" * 60 + "\n")
if "gpt-oss" in model_name and "groq" in model_name:
reasoning_effort = "medium"
reasoning_format = "hidden"
llm_client = init_chat_model(
model_name,
temperature=temperature,
reasoning_effort=reasoning_effort,
reasoning_format=reasoning_format,
)
print(
f"[INFO] Using GPT-OSS model: {model_name} with reasoning effort: {reasoning_effort}"
)
elif "gpt-5" in model_name and "openai" in model_name:
reasoning_effort = "minimal"
llm_client = init_chat_model(
model_name,
reasoning_effort=reasoning_effort,
)
print(
f"[INFO] Using GPT-5 family model: {model_name} with reasoning effort: {reasoning_effort}"
)
else:
llm_client = init_chat_model(model_name, temperature=temperature)
print(f"[INFO] Initialized with {model_name}")
# Initialize agents with shared LLM client
log_agent = LogAnalysisAgent(
model_name=model_name,
output_dir=log_agent_output_dir,
max_iterations=max_log_analysis_iterations,
llm_client=llm_client,
)
retrieval_supervisor = RetrievalSupervisor(
kb_path="./cyber_knowledge_base",
max_iterations=max_retrieval_iterations,
llm_client=llm_client,
)
response_agent = ResponseAgent(
model_name=model_name,
output_dir=response_agent_output_dir,
llm_client=llm_client,
)
def run_log_analysis(state: PipelineState) -> PipelineState:
"""Run log analysis and capture results."""
print("\n" + "=" * 60)
print("PHASE 1: LOG ANALYSIS")
print("=" * 60)
log_file = state["log_file"]
print(f"Analyzing log file: {log_file}")
if progress_callback:
progress_callback(20, "Running log analysis...")
# Run log analysis (agent should not print its own phase headers)
analysis_result = log_agent.analyze(log_file)
# Store results in state
state["log_analysis_result"] = analysis_result
if progress_callback:
progress_callback(40, "Log analysis completed")
print(
f"\nLog Analysis Assessment: {analysis_result.get('overall_assessment', 'UNKNOWN')}"
)
print(f"Abnormal Events: {len(analysis_result.get('abnormal_events', []))}")
return state
def run_retrieval_with_context(state: PipelineState) -> PipelineState:
"""Transform log analysis results and run retrieval supervisor."""
print("\n" + "=" * 60)
print("PHASE 2: THREAT INTELLIGENCE RETRIEVAL")
print("=" * 60)
# Get log analysis results
log_analysis_result = state["log_analysis_result"]
assessment = log_analysis_result.get("overall_assessment", "UNKNOWN")
# Create retrieval query based on log analysis
query = create_retrieval_query(log_analysis_result, state.get("query"))
print(f"Generated retrieval query based on {assessment} assessment")
print("\nStarting retrieval supervisor with log analysis context...\n")
if progress_callback:
progress_callback(50, "Running threat intelligence retrieval...")
# Run retrieval supervisor with trace=True to show terminal output
retrieval_result = retrieval_supervisor.invoke(
query=query,
log_analysis_report=log_analysis_result,
context=state.get("query"),
trace=False, # This shows the agent conversations in terminal
)
if progress_callback:
progress_callback(70, "Threat intelligence retrieval completed")
# Store retrieval results in state
state["retrieval_result"] = retrieval_result
return state
def run_response_analysis(state: PipelineState) -> PipelineState:
"""Run response agent to create Event ID → MITRE technique mappings."""
print("\n" + "=" * 60)
print("PHASE 3: RESPONSE CORRELATION ANALYSIS")
print("=" * 60)
print("Creating Event ID → MITRE technique mappings...")
if progress_callback:
progress_callback(80, "Running response correlation analysis...")
# Run response agent analysis (agent should not print its own phase headers)
response_analysis, markdown_report = response_agent.analyze_and_map(
log_analysis_result=state["log_analysis_result"],
retrieval_result=state["retrieval_result"],
log_file=state["log_file"],
tactic=state.get("tactic"),
)
if progress_callback:
progress_callback(90, "Response analysis completed")
# Store response analysis in state
state["response_analysis"] = response_analysis
# Store the markdown report in state
state["markdown_report"] = markdown_report
# The output path is already saved by analyze_and_map
print(f"Analysis complete! Results saved to final_response folder.")
print(f"\n" + "=" * 60)
print("PIPELINE COMPLETED")
print("=" * 60)
return state
# Create the workflow
workflow = StateGraph(PipelineState)
# Add nodes
workflow.add_node("log_analysis", run_log_analysis)
workflow.add_node("retrieval", run_retrieval_with_context)
workflow.add_node("response", run_response_analysis)
# Define flow
workflow.set_entry_point("log_analysis")
workflow.add_edge("log_analysis", "retrieval")
workflow.add_edge("retrieval", "response")
workflow.add_edge("response", END)
return workflow.compile(name="simple_integrated_pipeline")
def create_retrieval_query(
log_analysis_result: Dict[str, Any], user_query: str = None
) -> str:
"""Transform log analysis results into a retrieval query."""
assessment = log_analysis_result.get("overall_assessment", "UNKNOWN")
analysis_summary = log_analysis_result.get("analysis_summary", "")
abnormal_events = log_analysis_result.get("abnormal_events", [])
if assessment == "NORMAL" and not user_query:
return "Analyze this normal log activity and provide baseline threat intelligence for monitoring purposes."
query_parts = [
"Analyze the detected security anomalies and provide comprehensive threat intelligence.",
"",
f"Log Analysis Assessment: {assessment}",
f"Summary: {analysis_summary}",
"",
]
if abnormal_events:
query_parts.append("Detected Anomalies:")
for i, event in enumerate(abnormal_events[:5], 1): # Top 5 events
event_desc = event.get("event_description", "Unknown event")
severity = event.get("severity", "Unknown")
event_id = event.get("event_id", "N/A")
query_parts.append(f"{i}. Event {event_id} [{severity}]: {event_desc}")
query_parts.append("")
# Add intelligence requirements
query_parts.extend(
[
"Intelligence Requirements:",
"1. Map findings to relevant MITRE ATT&CK techniques and tactics",
"2. Provide threat actor attribution and campaign intelligence",
"3. Generate actionable IOCs and detection recommendations",
"4. Assess threat severity and recommend response actions",
]
)
if user_query:
query_parts.extend(["", f"Additional Context: {user_query}"])
return "\n".join(query_parts)
def analyze_log_file(
log_file: str,
query: str = None,
tactic: str = None,
model_name: str = "google_genai:gemini-2.0-flash",
temperature: float = 0.1,
max_log_analysis_iterations: int = 2,
max_retrieval_iterations: int = 2,
log_agent_output_dir: str = "analysis",
response_agent_output_dir: str = "final_response",
progress_callback=None,
):
"""
Analyze a single log file through the integrated pipeline.
Args:
log_file: Path to the log file to analyze
query: Optional user query for additional context
tactic: Optional tactic name for organizing output
model_name: Name of the model to use (e.g., "google_genai:gemini-2.0-flash", "groq:gpt-oss-120b", "groq:llama-3.1-8b-instant")
temperature: Temperature for model generation
max_log_analysis_iterations: Maximum number of iterations for the log analysis agent
max_retrieval_iterations: Maximum number of iterations for the retrieval supervisor
log_agent_output_dir: Directory to save log agent output
response_agent_output_dir: Directory to save response agent output
"""
if not os.path.exists(log_file):
print(f"Error: Log file not found: {log_file}")
return
print(f"Starting integrated pipeline analysis...")
print(f"Log file: {log_file}")
print(f"Model: {model_name}")
if tactic:
print(f"Tactic: {tactic}")
print(f"User query: {query or 'None'}")
# Create pipeline with specified model
pipeline = create_simple_pipeline(
model_name=model_name,
temperature=temperature,
max_log_analysis_iterations=max_log_analysis_iterations,
max_retrieval_iterations=max_retrieval_iterations,
log_agent_output_dir=log_agent_output_dir,
response_agent_output_dir=response_agent_output_dir,
progress_callback=progress_callback,
)
# Initialize state
initial_state = {
"log_file": log_file,
"log_analysis_result": {},
"retrieval_result": {},
"response_analysis": {},
"query": query or "",
"tactic": tactic or "",
"markdown_report": "",
}
# Run pipeline
start_time = time.time()
if progress_callback:
progress_callback(10, "Initializing pipeline...")
final_state = pipeline.invoke(initial_state)
end_time = time.time()
if progress_callback:
progress_callback(100, "Analysis complete!")
print(f"\nTotal execution time: {end_time - start_time:.2f} seconds")
print("Analysis complete!")
return final_state
def main():
"""Main entry point."""
if len(sys.argv) < 2:
print(
"Usage: python simple_pipeline.py <log_file> [query] [--model MODEL_NAME]"
)
print("\nExamples:")
print(" python simple_pipeline.py sample_log.json")
print(
" python simple_pipeline.py sample_log.json 'Focus on credential access attacks'"
)
print(" python simple_pipeline.py sample_log.json --model groq:gpt-oss-120b")
print("\nAvailable models:")
print(" - google_genai:gemini-2.0-flash")
print(" - google_genai:gemini-1.5-flash")
print(" - groq:gpt-oss-120b")
print(" - groq:gpt-oss-20b")
print(" - groq:llama-3.1-8b-instant")
print(" - groq:llama-3.3-70b-versatile")
sys.exit(1)
log_file = sys.argv[1]
query = None
# FIX: Use full model name format consistently
model_name = "google_genai:gemini-2.0-flash" # Changed from "gemini-2.0-flash"
temperature = 0.1
max_log_analysis_iterations = 2
max_retrieval_iterations = 2
log_agent_output_dir = "analysis"
response_agent_output_dir = "final_response"
# Parse arguments
i = 2
while i < len(sys.argv):
if sys.argv[i] == "--model" and i + 1 < len(sys.argv):
model_name = sys.argv[i + 1]
i += 2
else:
query = sys.argv[i]
i += 1
# Setup environment
load_dotenv()
# Run analysis
try:
final_state = analyze_log_file(
log_file,
query,
tactic=None,
model_name=model_name,
temperature=temperature,
max_log_analysis_iterations=max_log_analysis_iterations,
max_retrieval_iterations=max_retrieval_iterations,
log_agent_output_dir=log_agent_output_dir,
response_agent_output_dir=response_agent_output_dir,
)
print(final_state["markdown_report"])
except Exception as e:
print(f"Error: {e}")
sys.exit(1)
if __name__ == "__main__":
main()
|