File size: 10,451 Bytes
e4932aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
#!/usr/bin/env python3
"""

Run Evaluation Pipeline



This orchestrates the evaluation workflow on existing final_response data:

1. Count tactic occurrences (count_tactics.py)

2. Generate evaluation metrics (evaluate_metrics.py)

3. Compare models (compare_models.py)

4. Generate CSV with simple metrics (generate_metrics_csv.py)



NOTE: This does NOT run the full 3-agent pipeline.

      Use execute_pipeline.py separately to generate final_response data first.



Usage:

    python run_evaluation.py [--skip-counting]

"""
import subprocess
import sys
from pathlib import Path
from datetime import datetime
import argparse


def find_project_root(start: Path) -> Path:
    """Find the project root by looking for common markers."""
    for p in [start] + list(start.parents):
        if (
            (p / "final_response").exists()
            or (p / "src").exists()
            or (p / ".git").exists()
        ):
            return p
    return start.parent


class EvaluationRunner:
    """Orchestrates the evaluation workflow"""

    def __init__(self, skip_counting: bool = False):
        self.skip_counting = skip_counting
        current_file = Path(__file__).resolve()
        self.project_root = find_project_root(current_file.parent)
        # Point to the evaluation/full_pipeline directory for scripts
        self.eval_dir = self.project_root / "src" / "evaluation" / "full_pipeline"
        # Output directory now in mordor_dataset/eval_output
        self.output_dir = (
            self.project_root / "mordor_dataset" / "eval_output" / "evaluation_results"
        )
        self.start_time = None

    def print_header(self, step: str, description: str):
        """Print a formatted step header"""
        print("\n" + "=" * 80)
        print(f"STEP {step}: {description}")
        print("=" * 80)

    def run_command(self, description: str, cmd: list) -> bool:
        """Run a command and handle errors"""
        print(f"\n{description}")
        print(f"Command: {' '.join(str(c) for c in cmd)}\n")

        try:
            result = subprocess.run(cmd, check=True)
            print(f"\n[SUCCESS] {description} completed")
            return True
        except subprocess.CalledProcessError as e:
            print(f"\n[ERROR] {description} failed with exit code {e.returncode}")
            return False
        except Exception as e:
            print(f"\n[ERROR] Unexpected error during {description}: {e}")
            return False

    def step_1_count_tactics(self) -> bool:
        """Step 1: Count tactic occurrences"""
        self.print_header("1/3", "Counting Tactic Occurrences")

        if self.skip_counting:
            print("Skipping tactic counting (--skip-counting flag set)")
            print("Using existing tactic_counts_summary.json")
            return True

        final_response_dir = (
            self.project_root / "mordor_dataset" / "eval_output" / "final_response"
        )
        # Ensure output directory exists
        self.output_dir.mkdir(exist_ok=True)
        output_file = self.output_dir / "tactic_counts_summary.json"

        if not final_response_dir.exists():
            print(
                f"[ERROR] final_response directory not found at: {final_response_dir}"
            )
            print(
                "Run execute_pipeline_all_datasets.py first to generate analysis results"
            )
            return False

        # Count response_analysis.json files
        analysis_files = list(final_response_dir.rglob("response_analysis.json"))
        if not analysis_files:
            print(f"[ERROR] No response_analysis.json files found in final_response")
            print(
                "Run execute_pipeline_all_datasets.py first to generate analysis results"
            )
            return False

        print(f"Found {len(analysis_files)} analysis files")
        print(f"Output: {output_file}")

        script_path = self.eval_dir / "count_tactics.py"
        return self.run_command(
            "Count tactic occurrences",
            [sys.executable, str(script_path), "--output", str(output_file)],
        )

    def step_2_evaluate_metrics(self) -> bool:
        """Step 2: Generate evaluation metrics for each model"""
        self.print_header("2/3", "Generating Evaluation Metrics")

        tactic_counts_file = self.output_dir / "tactic_counts_summary.json"
        output_file = self.output_dir / "evaluation_report.json"

        if not tactic_counts_file.exists():
            print(f"[ERROR] Tactic counts file not found: {tactic_counts_file}")
            print("Run step 1 first or remove --skip-counting flag")
            return False

        print(f"Input: {tactic_counts_file}")
        print(f"Output: {output_file}")
        print(
            "Note: Individual model reports will be saved as evaluation_report_[model_name].json"
        )

        script_path = self.eval_dir / "evaluate_metrics.py"
        return self.run_command(
            "Generate evaluation metrics for each model",
            [
                sys.executable,
                str(script_path),
                "--input",
                str(tactic_counts_file),
                "--output",
                str(output_file),
            ],
        )

    def step_3_compare_models(self) -> bool:
        """Step 3: Compare models"""
        self.print_header("3/4", "Comparing Models")

        tactic_counts_file = self.output_dir / "tactic_counts_summary.json"
        output_file = self.output_dir / "model_comparison.json"

        if not tactic_counts_file.exists():
            print(f"[ERROR] Tactic counts file not found: {tactic_counts_file}")
            print("Run step 1 first or remove --skip-counting flag")
            return False

        print(f"Input: {tactic_counts_file}")
        print(f"Output: {output_file}")

        script_path = self.eval_dir / "compare_models.py"
        return self.run_command(
            "Compare models",
            [
                sys.executable,
                str(script_path),
                "--input",
                str(tactic_counts_file),
                "--output",
                str(output_file),
            ],
        )

    def step_4_generate_csv(self) -> bool:
        """Step 4: Generate CSV with simple metrics"""
        self.print_header("4/4", "Generating CSV Metrics")

        tactic_counts_file = self.output_dir / "tactic_counts_summary.json"
        output_file = self.output_dir / "model_metrics.csv"

        if not tactic_counts_file.exists():
            print(f"[ERROR] Tactic counts file not found: {tactic_counts_file}")
            print("Run step 1 first or remove --skip-counting flag")
            return False

        print(f"Input: {tactic_counts_file}")
        print(f"Output: {output_file}")

        script_path = self.eval_dir / "generate_metrics_csv.py"
        return self.run_command(
            "Generate CSV with simple metrics (F1, accuracy, precision, recall)",
            [
                sys.executable,
                str(script_path),
                "--input",
                str(tactic_counts_file),
                "--output",
                str(output_file),
            ],
        )

    def run(self) -> int:
        """Run the evaluation pipeline"""
        self.start_time = datetime.now()

        print("\n" + "=" * 80)
        print("EVALUATION PIPELINE")
        print("=" * 80)
        print(f"Project Root: {self.project_root}")
        print(f"Evaluation Dir: {self.eval_dir}")
        print(f"Output Dir: {self.output_dir}")
        print(f"Start Time: {self.start_time.strftime('%Y-%m-%d %H:%M:%S')}")

        # Step 1: Count tactics
        if not self.step_1_count_tactics():
            print("\n[ERROR] Evaluation failed at Step 1")
            return 1

        # Step 2: Evaluate metrics
        if not self.step_2_evaluate_metrics():
            print("\n[ERROR] Evaluation failed at Step 2")
            return 1

        # Step 3: Compare models
        if not self.step_3_compare_models():
            print("\n[ERROR] Evaluation failed at Step 3")
            return 1

        # Step 4: Generate CSV metrics
        if not self.step_4_generate_csv():
            print("\n[ERROR] Evaluation failed at Step 4")
            return 1

        # Success summary
        end_time = datetime.now()
        duration = (end_time - self.start_time).total_seconds()

        print("\n" + "=" * 80)
        print("EVALUATION PIPELINE COMPLETED SUCCESSFULLY")
        print("=" * 80)
        print(f"Duration: {duration:.1f} seconds")
        print(f"\nOutput Files:")
        print(f"  - {self.output_dir / 'tactic_counts_summary.json'}")
        print(f"  - {self.output_dir / 'evaluation_report.json'} (summary)")
        print(
            f"  - {self.output_dir / 'evaluation_report_[model_name].json'} (per model)"
        )
        print(f"  - {self.output_dir / 'model_comparison.json'}")
        print(
            f"  - {self.output_dir / 'model_metrics.csv'} (simple metrics: F1, accuracy, precision, recall)"
        )
        print(f"\nAll outputs are now organized under: mordor_dataset/eval_output/")
        print("=" * 80 + "\n")

        return 0


def main():
    parser = argparse.ArgumentParser(
        description="Run evaluation pipeline on existing final_response data",
        formatter_class=argparse.RawDescriptionHelpFormatter,
        epilog="""

Examples:

  # Run full evaluation (count tactics + evaluate metrics + compare models)

  python run_evaluation.py

  

  # Skip counting, only evaluate (use existing tactic_counts_summary.json)

  python run_evaluation.py --skip-counting



Note: This does NOT run the 3-agent pipeline.

      Use execute_pipeline_all_datasets.py separately to process mordor dataset files.

        """,
    )
    parser.add_argument(
        "--skip-counting",
        action="store_true",
        help="Skip counting tactics, use existing tactic_counts_summary.json",
    )

    args = parser.parse_args()

    runner = EvaluationRunner(skip_counting=args.skip_counting)
    exit_code = runner.run()
    sys.exit(exit_code)


if __name__ == "__main__":
    main()