File size: 23,088 Bytes
9e3d618 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 |
{
"cells": [
{
"metadata": {},
"cell_type": "markdown",
"source": "## CTI Agent",
"id": "1e014677902bc4a2"
},
{
"metadata": {},
"cell_type": "markdown",
"source": "## Set up",
"id": "57d21ad42c51b7bb"
},
{
"metadata": {
"ExecuteTime": {
"end_time": "2025-09-24T14:09:48.553649Z",
"start_time": "2025-09-24T14:09:40.747722Z"
}
},
"cell_type": "code",
"source": [
"%%capture --no-stderr\n",
"%pip install --quiet -U langgraph langchain-community langchain-google-genai langchain-tavily"
],
"id": "64e62b8be724effb",
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"WARNING: Ignoring invalid distribution ~umpy (D:\\Swinburne University of Technology\\2025\\Swinburne Semester 2 2025\\COS30018 - Intelligent Systems\\Assignment\\Cyber-Agent\\.venv\\Lib\\site-packages)\n",
"WARNING: Ignoring invalid distribution ~umpy (D:\\Swinburne University of Technology\\2025\\Swinburne Semester 2 2025\\COS30018 - Intelligent Systems\\Assignment\\Cyber-Agent\\.venv\\Lib\\site-packages)\n",
"WARNING: Ignoring invalid distribution ~umpy (D:\\Swinburne University of Technology\\2025\\Swinburne Semester 2 2025\\COS30018 - Intelligent Systems\\Assignment\\Cyber-Agent\\.venv\\Lib\\site-packages)\n",
"\n",
"[notice] A new release of pip is available: 25.0.1 -> 25.2\n",
"[notice] To update, run: python.exe -m pip install --upgrade pip\n"
]
}
],
"execution_count": 1
},
{
"metadata": {
"ExecuteTime": {
"end_time": "2025-09-24T14:09:59.629541Z",
"start_time": "2025-09-24T14:09:49.858591Z"
}
},
"cell_type": "code",
"source": [
"import getpass\n",
"import os\n",
"\n",
"def set_env_variable(var_name):\n",
" if var_name not in os.environ:\n",
" os.environ[var_name] = getpass.getpass(f\"{var_name}=\")\n",
"\n",
"set_env_variable(\"GEMINI_API_KEY\")\n",
"set_env_variable(\"TAVILY_API_KEY\")"
],
"id": "b9b8036f5182062b",
"outputs": [],
"execution_count": 2
},
{
"metadata": {},
"cell_type": "markdown",
"source": "### CTI Agent",
"id": "b7ccb1c1f41b189"
},
{
"metadata": {
"ExecuteTime": {
"end_time": "2025-09-24T14:10:00.191781Z",
"start_time": "2025-09-24T14:10:00.135222Z"
}
},
"cell_type": "code",
"source": [
"from typing import List\n",
"from typing_extensions import TypedDict\n",
"\n",
"class ReWOO(TypedDict):\n",
" task: str\n",
" plan_string: str\n",
" steps: List\n",
" results: dict\n",
" result: str"
],
"id": "1ff523d16a86a18c",
"outputs": [],
"execution_count": 3
},
{
"metadata": {},
"cell_type": "markdown",
"source": "#### Planner",
"id": "62b86e7dd440db74"
},
{
"metadata": {
"ExecuteTime": {
"end_time": "2025-09-24T14:10:30.386536Z",
"start_time": "2025-09-24T14:10:00.376586Z"
}
},
"cell_type": "code",
"source": [
"from langchain_google_genai import GoogleGenerativeAI\n",
"\n",
"llm = GoogleGenerativeAI(model=\"gemini-2.5-flash\", api_key=os.environ[\"GEMINI_API_KEY\"])"
],
"id": "7ee558c30d4e1c2c",
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"D:\\Swinburne University of Technology\\2025\\Swinburne Semester 2 2025\\COS30018 - Intelligent Systems\\Assignment\\Cyber-Agent\\.venv\\Lib\\site-packages\\tqdm\\auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
" from .autonotebook import tqdm as notebook_tqdm\n"
]
}
],
"execution_count": 4
},
{
"metadata": {
"ExecuteTime": {
"end_time": "2025-09-24T14:10:30.432069Z",
"start_time": "2025-09-24T14:10:30.421360Z"
}
},
"cell_type": "code",
"source": [
"prompt = \"\"\"For the following task, make plans that can solve the problem step by step. For each plan, indicate \\\n",
"which external tool together with tool input to retrieve evidence. You can store the evidence into a \\\n",
"variable #E that can be called by later tools. (Plan, #E1, Plan, #E2, Plan, ...)\n",
"\n",
"Tools can be one of the following:\n",
"(1) Google[input]: Worker that searches results from Google. Useful when you need to find short\n",
"and succinct answers about a specific topic. The input should be a search query.\n",
"(2) LLM[input]: A pretrained LLM like yourself. Useful when you need to act with general\n",
"world knowledge and common sense. Prioritize it when you are confident in solving the problem\n",
"yourself. Input can be any instruction.\n",
"\n",
"For example,\n",
"Task: Thomas, Toby, and Rebecca worked a total of 157 hours in one week. Thomas worked x\n",
"hours. Toby worked 10 hours less than twice what Thomas worked, and Rebecca worked 8 hours\n",
"less than Toby. How many hours did Rebecca work?\n",
"Plan: Given Thomas worked x hours, translate the problem into algebraic expressions and solve\n",
"with Wolfram Alpha. #E1 = WolframAlpha[Solve x + (2x β 10) + ((2x β 10) β 8) = 157]\n",
"Plan: Find out the number of hours Thomas worked. #E2 = LLM[What is x, given #E1]\n",
"Plan: Calculate the number of hours Rebecca worked. #E3 = Calculator[(2 β #E2 β 10) β 8]\n",
"\n",
"Begin!\n",
"Describe your plans with rich details. Each Plan should be followed by only one #E.\n",
"\n",
"Task: {task}\"\"\""
],
"id": "320871448adc80c",
"outputs": [],
"execution_count": 5
},
{
"metadata": {
"ExecuteTime": {
"end_time": "2025-09-24T14:10:30.518680Z",
"start_time": "2025-09-24T14:10:30.508496Z"
}
},
"cell_type": "code",
"source": "task = \"What are the latest CTI reports of the ATP that uses the T1566.002: Spearphishing Links techniques?\"",
"id": "cfbfbc30cd1f2a2d",
"outputs": [],
"execution_count": 6
},
{
"metadata": {
"ExecuteTime": {
"end_time": "2025-09-24T14:10:36.513049Z",
"start_time": "2025-09-24T14:10:30.637595Z"
}
},
"cell_type": "code",
"source": "result = llm.invoke(prompt.format(task=task))",
"id": "cb8c925be339d309",
"outputs": [],
"execution_count": 7
},
{
"metadata": {
"ExecuteTime": {
"end_time": "2025-09-24T14:10:36.543369Z",
"start_time": "2025-09-24T14:10:36.536547Z"
}
},
"cell_type": "code",
"source": "print(result)",
"id": "77cfb38f9b210b50",
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Plan: Search for the latest CTI reports that specifically mention ATP groups using the T1566.002: Spearphishing Links technique. I will prioritize recent publications.\n",
"#E1 = Google[latest CTI reports ATP T1566.002 Spearphishing Links]\n",
"Plan: Review the search results from #E1 to identify relevant reports from reputable cybersecurity intelligence sources. I will look for titles or snippets that indicate a focus on ATP activities and the specified MITRE ATT&CK technique. I will then extract the most pertinent information about the ATPs and their use of T1566.002.\n",
"#E2 = LLM[Analyze the search results from #E1 to identify specific CTI reports (title, source, date) that discuss ATPs using T1566.002: Spearphishing Links. Summarize the key findings from these reports, mentioning any specific ATP groups identified.]\n"
]
}
],
"execution_count": 8
},
{
"metadata": {},
"cell_type": "markdown",
"source": "#### Planner Node",
"id": "9e462bfcf2ec91f4"
},
{
"metadata": {
"ExecuteTime": {
"end_time": "2025-09-24T14:10:36.743644Z",
"start_time": "2025-09-24T14:10:36.631943Z"
}
},
"cell_type": "code",
"source": [
"import re\n",
"\n",
"from langchain_core.prompts import ChatPromptTemplate\n",
"\n",
"# Regex to match expressions of the form E#... = ...[...]\n",
"regex_pattern = r\"Plan:\\s*(.+)\\s*(#E\\d+)\\s*=\\s*(\\w+)\\s*\\[([^\\]]+)\\]\"\n",
"prompt_template = ChatPromptTemplate.from_messages([(\"user\", prompt)])\n",
"planner = prompt_template | llm\n",
"\n",
"\n",
"def get_plan(state: ReWOO):\n",
" task = state[\"task\"]\n",
" result = planner.invoke({\"task\": task})\n",
" # Find all matches in the sample text\n",
" matches = re.findall(regex_pattern, result)\n",
" return {\"steps\": matches, \"plan_string\": result}"
],
"id": "5c3693b5fd44aefa",
"outputs": [],
"execution_count": 9
},
{
"metadata": {},
"cell_type": "markdown",
"source": "### Executor",
"id": "ca86ebf96a47fff6"
},
{
"metadata": {
"ExecuteTime": {
"end_time": "2025-09-24T14:10:36.918073Z",
"start_time": "2025-09-24T14:10:36.775677Z"
}
},
"cell_type": "code",
"source": [
"from langchain_tavily import TavilySearch\n",
"\n",
"search_config = {\n",
" \"api_key\": os.environ[\"TAVILY_API_KEY\"],\n",
" \"max_results\": 10,\n",
" \"search_depth\": \"advanced\",\n",
" \"include_raw_content\": True\n",
"}\n",
"\n",
"search = TavilySearch(**search_config)"
],
"id": "b7367781aeac5c5",
"outputs": [],
"execution_count": 10
},
{
"metadata": {
"ExecuteTime": {
"end_time": "2025-09-24T14:10:36.964885Z",
"start_time": "2025-09-24T14:10:36.953023Z"
}
},
"cell_type": "code",
"source": [
"def _get_current_task(state: ReWOO):\n",
" if \"results\" not in state or state[\"results\"] is None:\n",
" return 1\n",
" if len(state[\"results\"]) == len(state[\"steps\"]):\n",
" return None\n",
" else:\n",
" return len(state[\"results\"]) + 1\n",
"\n",
"\n",
"def tool_execution(state: ReWOO):\n",
" \"\"\"Worker node that executes the tools of a given plan.\"\"\"\n",
" _step = _get_current_task(state)\n",
" _, step_name, tool, tool_input = state[\"steps\"][_step - 1]\n",
" _results = (state[\"results\"] or {}) if \"results\" in state else {}\n",
" for k, v in _results.items():\n",
" tool_input = tool_input.replace(k, v)\n",
" if tool == \"Google\":\n",
" result = search.invoke(tool_input)\n",
" elif tool == \"LLM\":\n",
" result = llm.invoke(tool_input)\n",
" else:\n",
" raise ValueError\n",
" _results[step_name] = str(result)\n",
" return {\"results\": _results}"
],
"id": "efb45424fa750ce5",
"outputs": [],
"execution_count": 11
},
{
"metadata": {},
"cell_type": "markdown",
"source": "### Solver",
"id": "4cf82df72d40e9cd"
},
{
"metadata": {
"ExecuteTime": {
"end_time": "2025-09-24T14:10:37.018935Z",
"start_time": "2025-09-24T14:10:37.008762Z"
}
},
"cell_type": "code",
"source": [
"solve_prompt = \"\"\"Solve the following task or problem. To solve the problem, we have made step-by-step Plan and \\\n",
"retrieved corresponding Evidence to each Plan. Use them with caution since long evidence might \\\n",
"contain irrelevant information.\n",
"\n",
"{plan}\n",
"\n",
"Now solve the question or task according to provided Evidence above. Respond with the answer\n",
"directly with no extra words.\n",
"\n",
"Task: {task}\n",
"Response:\"\"\"\n",
"\n",
"\n",
"def solve(state: ReWOO):\n",
" plan = \"\"\n",
" for _plan, step_name, tool, tool_input in state[\"steps\"]:\n",
" _results = (state[\"results\"] or {}) if \"results\" in state else {}\n",
" for k, v in _results.items():\n",
" tool_input = tool_input.replace(k, v)\n",
" step_name = step_name.replace(k, v)\n",
" plan += f\"Plan: {_plan}\\n{step_name} = {tool}[{tool_input}]\"\n",
" prompt = solve_prompt.format(plan=plan, task=state[\"task\"])\n",
" result = llm.invoke(prompt)\n",
" return {\"result\": result}"
],
"id": "b545c04c30414789",
"outputs": [],
"execution_count": 12
},
{
"metadata": {},
"cell_type": "markdown",
"source": "### Define Graph",
"id": "3b3fbec2f9880412"
},
{
"metadata": {
"ExecuteTime": {
"end_time": "2025-09-24T14:10:37.080389Z",
"start_time": "2025-09-24T14:10:37.071333Z"
}
},
"cell_type": "code",
"source": [
"def _route(state):\n",
" _step = _get_current_task(state)\n",
" if _step is None:\n",
" # We have executed all tasks\n",
" return \"solve\"\n",
" else:\n",
" # We are still executing tasks, loop back to the \"tool\" node\n",
" return \"tool\""
],
"id": "6fee70503c849ab",
"outputs": [],
"execution_count": 13
},
{
"metadata": {
"ExecuteTime": {
"end_time": "2025-09-24T14:10:37.812966Z",
"start_time": "2025-09-24T14:10:37.134773Z"
}
},
"cell_type": "code",
"source": [
"from langgraph.graph import END, StateGraph, START\n",
"\n",
"graph = StateGraph(ReWOO)\n",
"graph.add_node(\"plan\", get_plan)\n",
"graph.add_node(\"tool\", tool_execution)\n",
"graph.add_node(\"solve\", solve)\n",
"graph.add_edge(\"plan\", \"tool\")\n",
"graph.add_edge(\"solve\", END)\n",
"graph.add_conditional_edges(\"tool\", _route)\n",
"graph.add_edge(START, \"plan\")\n",
"\n",
"app = graph.compile()"
],
"id": "a10ad4abef949d17",
"outputs": [],
"execution_count": 14
},
{
"metadata": {
"ExecuteTime": {
"end_time": "2025-09-24T14:10:37.864440Z",
"start_time": "2025-09-24T14:10:37.849889Z"
}
},
"cell_type": "code",
"source": [
"from typing import Dict, Any\n",
"\n",
"def format_output(state: Dict[str, Any]) -> str:\n",
" \"\"\"Format the CTI agent output for better readability.\"\"\"\n",
" output = []\n",
"\n",
" for node_name, node_data in state.items():\n",
" output.append(f\"\\nπΉ **{node_name.upper()}**\")\n",
" output.append(\"=\" * 50)\n",
"\n",
" if node_name == \"plan\":\n",
" if \"plan_string\" in node_data:\n",
" output.append(\"π **Generated Plan:**\")\n",
" output.append(node_data[\"plan_string\"])\n",
"\n",
" if \"steps\" in node_data and node_data[\"steps\"]:\n",
" output.append(\"\\nπ **Extracted Steps:**\")\n",
" for i, (plan, step_name, tool, tool_input) in enumerate(node_data[\"steps\"], 1):\n",
" output.append(f\" {i}. {plan}\")\n",
" output.append(f\" π§ {step_name} = {tool}[{tool_input}]\")\n",
"\n",
" elif node_name == \"tool\":\n",
" if \"results\" in node_data:\n",
" output.append(\"π **Execution Results:**\")\n",
" for step_name, result in node_data[\"results\"].items():\n",
" output.append(f\" {step_name}:\")\n",
" # Truncate long results for readability\n",
" result_str = str(result)\n",
" if len(result_str) > 500:\n",
" result_str = result_str[:500] + \"... [truncated]\"\n",
" output.append(f\" {result_str}\")\n",
"\n",
" elif node_name == \"solve\":\n",
" if \"result\" in node_data:\n",
" output.append(\"β
**Final Answer:**\")\n",
" output.append(node_data[\"result\"])\n",
"\n",
" output.append(\"\")\n",
"\n",
" return \"\\n\".join(output)\n"
],
"id": "30f337a626e2fbf9",
"outputs": [],
"execution_count": 15
},
{
"metadata": {
"ExecuteTime": {
"end_time": "2025-09-24T14:11:24.978749Z",
"start_time": "2025-09-24T14:10:37.901866Z"
}
},
"cell_type": "code",
"source": [
"print(\"**CTI Agent Execution**\")\n",
"print(\"=\" * 60)\n",
"\n",
"for s in app.stream({\"task\": task}):\n",
" formatted_output = format_output(s)\n",
" print(formatted_output)\n",
" print(\"-\" * 60)"
],
"id": "b45aa62c23719738",
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"**CTI Agent Execution**\n",
"============================================================\n",
"\n",
"πΉ **PLAN**\n",
"==================================================\n",
"π **Generated Plan:**\n",
"Plan: Search for the latest CTI reports that specifically mention ATPs and the MITRE ATT&CK technique T1566.002 (Spearphishing Links). I will use keywords to narrow down the search to recent publications.\n",
"#E1 = Google[latest CTI reports ATP T1566.002 \"Spearphishing Links\" 2023 2024]\n",
"Plan: Review the search results from #E1 to identify specific CTI reports from reputable sources (e.g., major cybersecurity vendors, government agencies) that discuss ATPs utilizing spearphishing links. Synthesize the key findings, including the names of ATPs and the context of their T1566.002 usage.\n",
"#E2 = LLM[Based on the search results in #E1, identify and summarize the latest CTI reports that detail ATPs using T1566.002: Spearphishing Links. Include the names of the ATPs and a brief description of their activities related to this technique.]\n",
"\n",
"π **Extracted Steps:**\n",
" 1. Search for the latest CTI reports that specifically mention ATPs and the MITRE ATT&CK technique T1566.002 (Spearphishing Links). I will use keywords to narrow down the search to recent publications.\n",
" π§ #E1 = Google[latest CTI reports ATP T1566.002 \"Spearphishing Links\" 2023 2024]\n",
" 2. Review the search results from #E1 to identify specific CTI reports from reputable sources (e.g., major cybersecurity vendors, government agencies) that discuss ATPs utilizing spearphishing links. Synthesize the key findings, including the names of ATPs and the context of their T1566.002 usage.\n",
" π§ #E2 = LLM[Based on the search results in #E1, identify and summarize the latest CTI reports that detail ATPs using T1566.002: Spearphishing Links. Include the names of the ATPs and a brief description of their activities related to this technique.]\n",
"\n",
"------------------------------------------------------------\n",
"\n",
"πΉ **TOOL**\n",
"==================================================\n",
"π **Execution Results:**\n",
" #E1:\n",
" {'query': 'latest CTI reports ATP T1566.002 \"Spearphishing Links\" 2023 2024', 'follow_up_questions': None, 'answer': None, 'images': [], 'results': [{'url': 'https://attack.mitre.org/techniques/T1566/002/', 'title': 'Phishing: Spearphishing Link, Sub-technique T1566.002 - Enterprise', 'content': '| C0036 | Pikabot Distribution February 2024 | Pikabot Distribution February 2024 utilized emails with hyperlinks leading to malicious ZIP archive files containing scripts to download and install Pikabo... [truncated]\n",
"\n",
"------------------------------------------------------------\n",
"\n",
"πΉ **TOOL**\n",
"==================================================\n",
"π **Execution Results:**\n",
" #E1:\n",
" {'query': 'latest CTI reports ATP T1566.002 \"Spearphishing Links\" 2023 2024', 'follow_up_questions': None, 'answer': None, 'images': [], 'results': [{'url': 'https://attack.mitre.org/techniques/T1566/002/', 'title': 'Phishing: Spearphishing Link, Sub-technique T1566.002 - Enterprise', 'content': '| C0036 | Pikabot Distribution February 2024 | Pikabot Distribution February 2024 utilized emails with hyperlinks leading to malicious ZIP archive files containing scripts to download and install Pikabo... [truncated]\n",
" #E2:\n",
" Based on the provided search results, the following CTI reports detail APTs and campaigns using T1566.002 (Spearphishing Link) in 2023 and 2024:\n",
"\n",
"* **Pikabot Distribution February 2024 (C0036):** This campaign, observed in **February 2024**, utilized emails with hyperlinks that led victims to malicious ZIP archive files. These archives contained scripts designed to download and install the Pikabot malware.\n",
"* **TA577 (G1037) / Latrodectus (S1160):** The threat group TA577, in campaigns report... [truncated]\n",
"\n",
"------------------------------------------------------------\n",
"\n",
"πΉ **SOLVE**\n",
"==================================================\n",
"β
**Final Answer:**\n",
"The latest CTI reports of ATPs using the T1566.002 (Spearphishing Links) technique include:\n",
"\n",
"* **Pikabot Distribution February 2024 (C0036):** This campaign, observed in February 2024, used emails with hyperlinks leading to malicious ZIP archive files for Pikabot malware distribution.\n",
"* **TA577 (G1037) / Latrodectus (S1160):** In April 2024, TA577 sent emails with malicious links to distribute Latrodectus malware via malicious JavaScript files.\n",
"* **Storm-1811 (G1046):** In May 2024, Storm-1811 distributed malicious links that redirected victims to EvilProxy-based phishing sites to harvest credentials.\n",
"* **OilRig (G0049) / APT34 / Earth Simnavaz:** This group continues to use spearphishing links. Recent activity under the name \"Earth Simnavaz\" was reported in October 2024, and \"Crambus\" (an associated group name) in October 2023.\n",
"\n",
"------------------------------------------------------------\n"
]
}
],
"execution_count": 16
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.6"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|