Spaces:
Sleeping
Sleeping
File size: 43,568 Bytes
9e3d618 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 |
"""
LogAnalysisAgent - Main orchestrator for cybersecurity log analysis
"""
import os
import json
import time
from datetime import datetime
from pathlib import Path
from typing import List, Dict, Optional
from langchain_core.messages import HumanMessage
from langgraph.prebuilt import create_react_agent
from langchain_core.tools import tool
from langgraph.graph import StateGraph, END
from langchain.chat_models import init_chat_model
from langsmith import traceable, Client, get_current_run_tree
from src.agents.log_analysis_agent.state_models import AnalysisState
from src.agents.log_analysis_agent.utils import (
get_llm,
get_tools,
format_execution_time,
truncate_to_tokens,
)
from src.agents.log_analysis_agent.prompts import (
ANALYSIS_PROMPT,
CRITIC_FEEDBACK_TEMPLATE,
SELF_CRITIC_PROMPT,
)
ls_client = Client(api_key=os.getenv("LANGSMITH_API_KEY"))
class LogAnalysisAgent:
"""
Main orchestrator for cybersecurity log analysis.
Coordinates the entire workflow: load → preprocess → analyze → save → display
"""
def __init__(
self,
model_name: str = "google_genai:gemini-2.0-flash",
temperature: float = 0.1,
output_dir: str = "analysis",
max_iterations: int = 2,
llm_client=None,
):
"""
Initialize the Log Analysis Agent
Args:
model_name: Name of the model to use (e.g. "google_genai:gemini-2.0-flash")
temperature: Temperature for the model
output_dir: Directory name for saving outputs (relative to package directory)
max_iterations: Maximum number of iterations for the ReAct agent
llm_client: Optional pre-initialized LLM client (overrides model_name/temperature)
"""
if llm_client:
self.llm = llm_client
print(f"[INFO] Log Analysis Agent: Using provided LLM client")
else:
self.llm = init_chat_model(model_name, temperature=temperature)
print(f"[INFO] Log Analysis Agent: Using default LLM model: {model_name}")
self.base_tools = get_tools()
self.output_root = Path(output_dir)
self.output_root.mkdir(exist_ok=True)
# Initialize helper components
self.log_processor = LogProcessor(model_name=model_name)
self.react_analyzer = ReactAnalyzer(
self.llm, self.base_tools, max_iterations=max_iterations
)
self.result_manager = ResultManager(self.output_root)
# Create workflow graph
self.workflow = self._create_workflow()
def _create_workflow(self) -> StateGraph:
"""Create and configure the analysis workflow graph"""
workflow = StateGraph(AnalysisState)
# Add nodes using instance methods
workflow.add_node("load_logs", self.log_processor.load_logs)
workflow.add_node("preprocess_logs", self.log_processor.preprocess_logs)
workflow.add_node("react_agent_analysis", self.react_analyzer.analyze)
workflow.add_node("save_results", self.result_manager.save_results)
workflow.add_node("display_results", self.result_manager.display_results)
# Define workflow edges
workflow.set_entry_point("load_logs")
workflow.add_edge("load_logs", "preprocess_logs")
workflow.add_edge("preprocess_logs", "react_agent_analysis")
workflow.add_edge("react_agent_analysis", "save_results")
workflow.add_edge("save_results", "display_results")
workflow.add_edge("display_results", END)
return workflow.compile(name="log_analysis_agent")
def _log_workflow_metrics(
self,
workflow_step: str,
execution_time: float,
success: bool,
details: dict = None,
):
"""Log workflow step performance metrics to LangSmith."""
try:
current_run = get_current_run_tree()
if current_run:
ls_client.create_feedback(
run_id=current_run.id,
key="log_analysis_workflow_performance",
score=1.0 if success else 0.0,
value={
"workflow_step": workflow_step,
"execution_time": execution_time,
"success": success,
"details": details or {},
"agent_type": "log_analysis_workflow",
},
)
except Exception as e:
print(f"Failed to log workflow metrics: {e}")
def _log_security_analysis_results(self, analysis_result: dict):
"""Log security analysis findings to LangSmith."""
try:
current_run = get_current_run_tree()
if current_run:
assessment = analysis_result.get("overall_assessment", "UNKNOWN")
abnormal_events = analysis_result.get("abnormal_events", [])
total_events = analysis_result.get("total_events_analyzed", 0)
# Calculate threat score
threat_score = 0.0
if assessment == "CRITICAL":
threat_score = 1.0
elif assessment == "HIGH":
threat_score = 0.8
elif assessment == "MEDIUM":
threat_score = 0.5
elif assessment == "LOW":
threat_score = 0.2
ls_client.create_feedback(
run_id=current_run.id,
key="security_analysis_results",
score=threat_score,
value={
"overall_assessment": assessment,
"abnormal_events_count": len(abnormal_events),
"total_events_analyzed": total_events,
"execution_time": analysis_result.get(
"execution_time_formatted", "Unknown"
),
"iteration_count": analysis_result.get("iteration_count", 1),
"abnormal_events": abnormal_events[
:5
], # Limit to first 5 for logging
},
)
except Exception as e:
print(f"Failed to log security analysis results: {e}")
def _log_batch_analysis_metrics(
self,
total_files: int,
successful: int,
start_time: datetime,
end_time: datetime,
):
"""Log batch analysis performance metrics."""
try:
current_run = get_current_run_tree()
if current_run:
duration = (end_time - start_time).total_seconds()
success_rate = successful / total_files if total_files > 0 else 0
ls_client.create_feedback(
run_id=current_run.id,
key="batch_analysis_performance",
score=success_rate,
value={
"total_files": total_files,
"successful_files": successful,
"failed_files": total_files - successful,
"success_rate": success_rate,
"duration_seconds": duration,
"files_per_minute": (
(total_files / duration) * 60 if duration > 0 else 0
),
},
)
except Exception as e:
print(f"Failed to log batch analysis metrics: {e}")
@traceable(name="log_analysis_agent_full_workflow")
def analyze(self, log_file: str) -> Dict:
"""
Analyze a single log file
Args:
log_file: Path to the log file to analyze
Returns:
Dictionary containing the analysis result
"""
state = self._initialize_state(log_file)
result = self.workflow.invoke(state, config={"recursion_limit": 100})
analysis_result = result.get("analysis_result", {})
if analysis_result:
self._log_security_analysis_results(analysis_result)
return analysis_result
@traceable(name="log_analysis_agent_batch_workflow")
def analyze_batch(
self, dataset_dir: str, skip_existing: bool = False
) -> List[Dict]:
"""
Analyze all log files in a dataset directory
Args:
dataset_dir: Path to directory containing log files
skip_existing: Whether to skip already analyzed files
Returns:
List of result dictionaries for each file
"""
print("=" * 60)
print("BATCH MODE: Analyzing all files in dataset")
print("=" * 60 + "\n")
files = self._find_dataset_files(dataset_dir)
if not files:
print("No JSON files found in dataset directory")
return []
print(f"Found {len(files)} files to analyze")
if skip_existing:
print("Skip mode enabled: Already analyzed files will be skipped")
print()
results = []
batch_start = datetime.now()
for idx, file_path in enumerate(files, 1):
filename = os.path.basename(file_path)
print(f"\n[{idx}/{len(files)}] Processing: {filename}")
print("-" * 60)
result = self._analyze_single_file(file_path, skip_existing)
results.append(result)
if result["success"]:
print(f"Status: {result['message']}")
else:
print(f"Status: FAILED - {result['message']}")
batch_end = datetime.now()
successful = sum(1 for r in results if r["success"])
self._log_batch_analysis_metrics(len(files), successful, batch_start, batch_end)
self.result_manager.display_batch_summary(results, batch_start, batch_end)
return results
def _initialize_state(self, log_file: str) -> Dict:
"""Initialize the analysis state with default values"""
return {
"log_file": log_file,
"raw_logs": "",
"prepared_logs": "",
"analysis_result": {},
"messages": [],
"agent_reasoning": "",
"agent_observations": [],
"iteration_count": 0,
"critic_feedback": "",
"iteration_history": [],
"start_time": 0.0,
"end_time": 0.0,
}
def _analyze_single_file(self, log_file: str, skip_existing: bool = False) -> Dict:
"""Analyze a single log file with error handling"""
try:
if skip_existing:
existing = self.result_manager.get_existing_output(log_file)
if existing:
return {
"success": True,
"log_file": log_file,
"message": "Skipped (already analyzed)",
"result": None,
}
state = self._initialize_state(log_file)
self.workflow.invoke(state, config={"recursion_limit": 100})
return {
"success": True,
"log_file": log_file,
"message": "Analysis completed",
"result": state.get("analysis_result"),
}
except Exception as e:
return {
"success": False,
"log_file": log_file,
"message": f"Error: {str(e)}",
"result": None,
}
def _find_dataset_files(self, dataset_dir: str) -> List[str]:
"""Find all JSON files in the dataset directory"""
import glob
if not os.path.exists(dataset_dir):
print(f"Error: Dataset directory not found: {dataset_dir}")
return []
json_files = glob.glob(os.path.join(dataset_dir, "*.json"))
return sorted(json_files)
class LogProcessor:
"""
Handles log loading and preprocessing operations
"""
def __init__(self, max_size: int = 30000, model_name: str = ""):
"""
Initialize the log processor
Args:
max_size: Maximum character size before applying sampling
model_name: Model name to adjust limits accordingly
"""
if "gpt-oss" in model_name.lower():
self.max_size = 5000 # Conservative limit for GPT-OSS models
print(
f"[INFO] Using reduced sampling size ({self.max_size}) for GPT-OSS model"
)
else:
self.max_size = max_size
self.model_name = model_name
def _get_max_input_tokens(self, model_name: str) -> int:
"""
Determine maximum input tokens based on model capabilities
Args:
model_name: Name of the model to determine token limits for
Returns:
Maximum input tokens for the model
"""
model_lower = model_name.lower()
# Gemini models: 300k tokens
if "gemini" in model_lower:
return 200_000
# elif "gpt-5" in model_lower:
# return 80_000
# Default for other models: 45k tokens
else:
return 45_000
@traceable(name="log_processor_load_logs")
def load_logs(self, state: AnalysisState) -> AnalysisState:
"""Load logs from file and initialize state"""
filename = os.path.basename(state["log_file"])
print(f"Loading logs from: {filename}")
# Record start time
state["start_time"] = time.time()
start_time = time.time()
try:
with open(state["log_file"], "r", encoding="utf-8") as f:
raw = f.read()
success = True
except Exception as e:
print(f"Error reading file: {e}")
raw = f"Error loading file: {e}"
success = False
execution_time = time.time() - start_time
self._log_loading_metrics(filename, len(raw), execution_time, success)
state["raw_logs"] = raw
state["max_input_token"] = self._get_max_input_tokens(self.model_name)
state["messages"] = []
state["agent_reasoning"] = ""
state["agent_observations"] = []
state["iteration_count"] = 0
state["critic_feedback"] = ""
state["iteration_history"] = []
state["end_time"] = 0.0
return state
@traceable(name="log_processor_preprocess_logs")
def preprocess_logs(self, state: AnalysisState) -> AnalysisState:
"""Preprocess logs for analysis - token-based truncation based on model capabilities"""
raw = state["raw_logs"]
line_count = raw.count("\n")
max_tokens = state["max_input_token"]
print(
f"Loaded {line_count} lines, {len(raw)} characters (max tokens: {max_tokens:,})"
)
start_time = time.time()
# Truncate by tokens to keep context windows manageable
truncated = truncate_to_tokens(raw, max_tokens)
token_truncation_applied = len(truncated) < len(raw)
# Prepare final text with minimal header
state["prepared_logs"] = f"TOTAL LINES: {line_count}\n\n{truncated}"
execution_time = time.time() - start_time
self._log_preprocessing_metrics(
line_count,
len(raw),
len(truncated),
token_truncation_applied,
execution_time,
)
return state
def _log_loading_metrics(
self, filename: str, file_size: int, execution_time: float, success: bool
):
"""Log file loading performance metrics."""
try:
current_run = get_current_run_tree()
if current_run:
ls_client.create_feedback(
run_id=current_run.id,
key="log_loading_performance",
score=1.0 if success else 0.0,
value={
"filename": filename,
"file_size_chars": file_size,
"execution_time": execution_time,
"success": success,
},
)
except Exception as e:
print(f"Failed to log loading metrics: {e}")
def _log_preprocessing_metrics(
self,
line_count: int,
original_size: int,
processed_size: int,
sampling_applied: bool,
execution_time: float,
):
"""Log preprocessing performance metrics."""
try:
current_run = get_current_run_tree()
if current_run:
ls_client.create_feedback(
run_id=current_run.id,
key="log_preprocessing_performance",
score=1.0,
value={
"line_count": line_count,
"original_size_chars": original_size,
"processed_size_chars": processed_size,
"sampling_applied": sampling_applied,
"size_reduction": (
(original_size - processed_size) / original_size
if original_size > 0
else 0
),
"execution_time": execution_time,
},
)
except Exception as e:
print(f"Failed to log preprocessing metrics: {e}")
def _apply_sampling(self, raw: str) -> str:
"""Apply sampling strategy with line-aware boundaries"""
lines = raw.split("\n")
total_lines = len(lines)
if total_lines <= 50: # Small files, return as-is
return raw
# Take proportional samples but respect line boundaries
first_lines = lines[: int(total_lines * 0.25)] # First 25%
middle_start = int(total_lines * 0.4)
middle_end = int(total_lines * 0.6)
middle_lines = lines[middle_start:middle_end] # Middle 20%
last_lines = lines[-int(total_lines * 0.25) :] # Last 25%
return f"""=== BEGINNING ({len(first_lines)} lines) ===
{chr(10).join(first_lines)}
=== MIDDLE (lines {middle_start}-{middle_end}) ===
{chr(10).join(middle_lines)}
=== END ({len(last_lines)} lines) ===
{chr(10).join(last_lines)}"""
class ReactAnalyzer:
"""
Handles ReAct agent analysis with iterative refinement
Combines react_engine + criticism_engine logic
"""
def __init__(self, llm, base_tools, max_iterations: int = 2):
"""
Initialize the ReAct analyzer
Args:
llm: Language model instance
base_tools: List of base tools for the agent
max_iterations: Maximum refinement iterations
"""
self.llm = llm
self.base_tools = base_tools
self.max_iterations = max_iterations
@traceable(name="react_analyzer_analysis")
def analyze(self, state: AnalysisState) -> AnalysisState:
"""Perform ReAct agent analysis with iterative refinement"""
print("Starting ReAct agent analysis with iterative refinement...")
start_time = time.time()
# Create state-aware tools
tools = self._create_state_aware_tools(state)
# Create ReAct agent
agent_executor = create_react_agent(
self.llm, tools, name="react_agent_analysis"
)
# System context
system_context = """You are Agent A, an autonomous cybersecurity analyst.
IMPORTANT CONTEXT - RAW LOGS AVAILABLE:
The complete raw logs are available for certain tools automatically.
When you call event_id_extractor_with_logs or timeline_builder_with_logs,
you only need to provide the required parameters - the tools will automatically
access the raw logs to perform their analysis.
"""
try:
# Iterative refinement loop
for iteration in range(self.max_iterations):
state["iteration_count"] = iteration
print(f"\n{'='*60}")
print(f"ITERATION {iteration + 1}/{self.max_iterations}")
print(f"{'='*60}")
# Prepare prompt with optional feedback
messages = self._prepare_messages(state, iteration, system_context)
# Run ReAct agent
print(f"Running agent analysis...")
result = agent_executor.invoke(
{"messages": messages}, config={"recursion_limit": 100}
)
state["messages"] = result["messages"]
# Extract and process final analysis
final_analysis = self._extract_final_analysis(state["messages"])
# Calculate execution time
state["end_time"] = time.time()
execution_time = format_execution_time(
state["end_time"] - state["start_time"]
)
# Extract reasoning
state["agent_reasoning"] = final_analysis.get("reasoning", "")
# Format result
state["analysis_result"] = self._format_analysis_result(
final_analysis,
execution_time,
iteration + 1,
state["agent_reasoning"],
)
# Run self-critic review
print("Running self-critic review...")
original_analysis = state["analysis_result"].copy()
critic_result = self._critic_review(state)
# Store iteration in history
state["iteration_history"].append(
{
"iteration": iteration + 1,
"original_analysis": original_analysis,
"critic_evaluation": {
"quality_acceptable": critic_result["quality_acceptable"],
"issues": critic_result["issues"],
"feedback": critic_result["feedback"],
},
"corrected_analysis": critic_result["corrected_analysis"],
}
)
# Use corrected analysis
corrected = critic_result["corrected_analysis"]
corrected["execution_time_seconds"] = original_analysis.get(
"execution_time_seconds", 0
)
corrected["execution_time_formatted"] = original_analysis.get(
"execution_time_formatted", "Unknown"
)
corrected["iteration_count"] = iteration + 1
state["analysis_result"] = corrected
# Check if refinement is needed
if critic_result["quality_acceptable"]:
print(
f"✓ Quality acceptable - stopping at iteration {iteration + 1}"
)
break
elif iteration < self.max_iterations - 1:
print(
f"✗ Quality needs improvement - proceeding to iteration {iteration + 2}"
)
state["critic_feedback"] = critic_result["feedback"]
else:
print(f"✗ Max iterations reached - using current analysis")
print(
f"\nAnalysis complete after {state['iteration_count'] + 1} iteration(s)"
)
print(f"Total messages: {len(state['messages'])}")
except Exception as e:
print(f"Error in analysis: {e}")
import traceback
traceback.print_exc()
state["end_time"] = time.time()
execution_time = format_execution_time(
state["end_time"] - state["start_time"]
)
state["analysis_result"] = {
"overall_assessment": "ERROR",
"total_events_analyzed": 0,
"execution_time_seconds": execution_time["total_seconds"],
"execution_time_formatted": execution_time["formatted_time"],
"analysis_summary": f"Analysis failed: {e}",
"agent_reasoning": "",
"abnormal_event_ids": [],
"abnormal_events": [],
"iteration_count": state.get("iteration_count", 0),
}
return state
def _create_state_aware_tools(self, state: AnalysisState):
"""Create state-aware versions of tools that need raw logs"""
# Create state-aware event_id_extractor
@tool
def event_id_extractor_with_logs(suspected_event_id: str) -> dict:
"""Validates and corrects Windows Event IDs identified in log analysis."""
from .tools.event_id_extractor_tool import _event_id_extractor_tool
return _event_id_extractor_tool.run(
{
"suspected_event_id": suspected_event_id,
"raw_logs": state["raw_logs"],
}
)
# Create state-aware timeline_builder
@tool
def timeline_builder_with_logs(
pivot_entity: str, pivot_type: str, time_window_minutes: int = 5
) -> dict:
"""Build a focused timeline around suspicious events to understand attack sequences.
Use this when you suspect coordinated activity or want to understand what happened
before and after a suspicious event. Analyzes the sequence of events to identify patterns.
Args:
pivot_entity: The entity to build timeline around (e.g., "powershell.exe", "admin", "192.168.1.100")
pivot_type: Type of entity - "user", "process", "ip", "file", "computer", "event_id", or "registry"
time_window_minutes: Minutes before and after pivot events to include (default: 5)
Returns:
Timeline analysis showing events before and after the pivot, helping identify attack sequences.
"""
from .tools.timeline_builder_tool import _timeline_builder_tool
return _timeline_builder_tool.run(
{
"pivot_entity": pivot_entity,
"pivot_type": pivot_type,
"time_window_minutes": time_window_minutes,
"raw_logs": state["raw_logs"],
}
)
# Replace base tools with state-aware versions
tools = [
t
for t in self.base_tools
if t.name not in ["event_id_extractor", "timeline_builder"]
]
tools.append(event_id_extractor_with_logs)
tools.append(timeline_builder_with_logs)
return tools
def _prepare_messages(
self, state: AnalysisState, iteration: int, system_context: str
):
"""Prepare messages for the ReAct agent"""
if iteration == 0:
# First iteration - no feedback
critic_feedback_section = ""
full_prompt = system_context + ANALYSIS_PROMPT.format(
logs=state["prepared_logs"],
critic_feedback_section=critic_feedback_section,
)
messages = [HumanMessage(content=full_prompt)]
else:
# Subsequent iterations - include feedback and preserve messages
critic_feedback_section = CRITIC_FEEDBACK_TEMPLATE.format(
iteration=iteration + 1, feedback=state["critic_feedback"]
)
# ONLY COPY LANGCHAIN MESSAGE OBJECTS, NOT DICTS
messages = [msg for msg in state["messages"] if not isinstance(msg, dict)]
messages.append(HumanMessage(content=critic_feedback_section))
return messages
def _extract_final_analysis(self, messages):
"""Extract the final analysis from agent messages"""
final_message = None
for msg in reversed(messages):
if (
hasattr(msg, "__class__")
and msg.__class__.__name__ == "AIMessage"
and hasattr(msg, "content")
and msg.content
and (not hasattr(msg, "tool_calls") or not msg.tool_calls)
):
final_message = msg.content
break
if not final_message:
raise Exception("No final analysis message found")
return self._parse_agent_output(final_message)
def _parse_agent_output(self, content: str) -> dict:
"""Parse agent's final output"""
try:
if "```json" in content:
json_str = content.split("```json")[1].split("```")[0].strip()
elif "```" in content:
json_str = content.split("```")[1].split("```")[0].strip()
else:
json_str = content.strip()
return json.loads(json_str)
except Exception as e:
print(f"Failed to parse agent output: {e}")
return {
"overall_assessment": "UNKNOWN",
"total_events_analyzed": 0,
"analysis_summary": content[:500],
"reasoning": "",
"abnormal_event_ids": [],
"abnormal_events": [],
}
def _format_analysis_result(
self, final_analysis, execution_time, iteration_count, agent_reasoning
):
"""Format the analysis result into the expected structure"""
abnormal_events = []
for event in final_analysis.get("abnormal_events", []):
event_with_tools = {
"event_id": event.get("event_id", ""),
"event_description": event.get("event_description", ""),
"why_abnormal": event.get("why_abnormal", ""),
"severity": event.get("severity", ""),
"indicators": event.get("indicators", []),
"potential_threat": event.get("potential_threat", ""),
"attack_category": event.get("attack_category", ""),
"tool_enrichment": event.get("tool_enrichment", {}),
}
abnormal_events.append(event_with_tools)
return {
"overall_assessment": final_analysis.get("overall_assessment", "UNKNOWN"),
"total_events_analyzed": final_analysis.get("total_events_analyzed", 0),
"execution_time_seconds": execution_time["total_seconds"],
"execution_time_formatted": execution_time["formatted_time"],
"analysis_summary": final_analysis.get("analysis_summary", ""),
"agent_reasoning": agent_reasoning,
"abnormal_event_ids": final_analysis.get("abnormal_event_ids", []),
"abnormal_events": abnormal_events,
"iteration_count": iteration_count,
}
# ========== CRITIC ENGINE METHODS ==========
def _critic_review(self, state: dict) -> dict:
"""Run self-critic review with quality evaluation"""
critic_input = SELF_CRITIC_PROMPT.format(
final_json=json.dumps(state["analysis_result"], indent=2),
messages="\n".join(
[str(m.content) for m in state["messages"] if hasattr(m, "content")]
),
logs=state["prepared_logs"],
)
resp = self.llm.invoke(critic_input)
full_response = resp.content
try:
# Parse critic response
quality_acceptable, issues, feedback, corrected_json = (
self._parse_critic_response(full_response)
)
return {
"quality_acceptable": quality_acceptable,
"issues": issues,
"feedback": feedback,
"corrected_analysis": corrected_json,
"full_response": full_response,
}
except Exception as e:
print(f"[Critic] Failed to parse review: {e}")
# If critic fails, accept current analysis
return {
"quality_acceptable": True,
"issues": [],
"feedback": "",
"corrected_analysis": state["analysis_result"],
"full_response": full_response,
}
def _parse_critic_response(self, content: str) -> tuple:
"""Parse critic response and evaluate quality"""
# Extract sections
issues_section = ""
feedback_section = ""
if "## ISSUES FOUND" in content:
parts = content.split("## ISSUES FOUND")
if len(parts) > 1:
issues_part = parts[1].split("##")[0].strip()
issues_section = issues_part
if "## FEEDBACK FOR AGENT" in content:
parts = content.split("## FEEDBACK FOR AGENT")
if len(parts) > 1:
feedback_part = parts[1].split("##")[0].strip()
feedback_section = feedback_part
# Extract corrected JSON
if "```json" in content:
json_str = content.split("```json")[1].split("```")[0].strip()
elif "```" in content:
json_str = content.split("```")[1].split("```")[0].strip()
else:
json_str = "{}"
corrected_json = json.loads(json_str)
# Evaluate quality based on issues
issues = self._extract_issues(issues_section)
quality_acceptable = self._evaluate_quality(issues, issues_section)
return quality_acceptable, issues, feedback_section, corrected_json
def _extract_issues(self, issues_text: str) -> list:
"""Extract structured issues from text"""
issues = []
# Check for "None" or "no issues"
if (
"none" in issues_text.lower()
and "analysis is acceptable" in issues_text.lower()
):
return issues
# Extract issue types
issue_types = {
"MISSING_EVENT_IDS": "missing_event_ids",
"SEVERITY_MISMATCH": "severity_mismatch",
"IGNORED_TOOLS": "ignored_tool_results",
"INCOMPLETE_EVENTS": "incomplete_abnormal_events",
"EVENT_ID_FORMAT": "event_id_format",
"SCHEMA_ISSUES": "schema_issues",
"UNDECODED_COMMANDS": "undecoded_commands",
}
for keyword, issue_type in issue_types.items():
if keyword in issues_text:
issues.append({"type": issue_type, "text": issues_text})
return issues
def _evaluate_quality(self, issues: list, issues_text: str) -> bool:
"""Evaluate if quality is acceptable"""
# If no issues found
if not issues:
return True
# Critical issue types that trigger iteration
critical_types = {
"missing_event_ids",
"severity_mismatch",
"ignored_tool_results",
"incomplete_abnormal_events",
"undecoded_commands",
}
# Count critical issues
critical_count = sum(1 for issue in issues if issue["type"] in critical_types)
# Quality threshold: max 1 critical issue is acceptable
if critical_count >= 2:
return False
# Additional check: if issues_text indicates major problems
if any(
word in issues_text.lower() for word in ["critical", "major", "serious"]
):
return False
return True
class ResultManager:
"""
Handles saving results to disk and displaying to console
"""
def __init__(self, output_root: Path):
"""
Initialize the result manager
Args:
output_root: Root directory for saving outputs
"""
self.output_root = output_root
@traceable(name="result_manager_save_results")
def save_results(self, state: AnalysisState) -> AnalysisState:
"""Save analysis results and messages to files"""
input_name = os.path.splitext(os.path.basename(state["log_file"]))[0]
analysis_dir = self.output_root / input_name
analysis_dir.mkdir(exist_ok=True)
ts = datetime.now().strftime("%Y%m%d_%H%M%S")
start_time = time.time()
success = True
try:
# Save main analysis result
out_file = analysis_dir / f"analysis_{ts}.json"
with open(out_file, "w", encoding="utf-8") as f:
json.dump(state["analysis_result"], f, indent=2)
# Save iteration history
history_file = analysis_dir / f"iterations_{ts}.json"
with open(history_file, "w", encoding="utf-8") as f:
json.dump(state.get("iteration_history", []), f, indent=2)
# Save messages history
messages_file = analysis_dir / f"messages_{ts}.json"
serializable_messages = self._serialize_messages(state.get("messages", []))
with open(messages_file, "w", encoding="utf-8") as f:
json.dump(serializable_messages, f, indent=2)
except Exception as e:
print(f"Error saving results: {e}")
success = False
execution_time = time.time() - start_time
self._log_save_metrics(input_name, execution_time, success)
return state
def _log_save_metrics(self, input_name: str, execution_time: float, success: bool):
"""Log file saving performance metrics."""
try:
current_run = get_current_run_tree()
if current_run:
ls_client.create_feedback(
run_id=current_run.id,
key="result_save_performance",
score=1.0 if success else 0.0,
value={
"input_name": input_name,
"execution_time": execution_time,
"success": success,
},
)
except Exception as e:
print(f"Failed to log save metrics: {e}")
@traceable(name="result_manager_display_results")
def display_results(self, state: AnalysisState) -> AnalysisState:
"""Display formatted analysis results"""
result = state["analysis_result"]
assessment = result.get("overall_assessment", "UNKNOWN")
execution_time = result.get("execution_time_formatted", "Unknown")
abnormal_events = result.get("abnormal_events", [])
iteration_count = result.get("iteration_count", 1)
print("\n" + "=" * 60)
print("ANALYSIS COMPLETE")
print("=" * 60)
print(f"ASSESSMENT: {assessment}")
print(f"ITERATIONS: {iteration_count}")
print(f"EXECUTION TIME: {execution_time}")
print(f"EVENTS ANALYZED: {result.get('total_events_analyzed', 'Unknown')}")
# Tools Used
tools_used = self._extract_tools_used(state.get("messages", []))
if tools_used:
print(f"TOOLS USED: {len(tools_used)} tools")
print(f" Types: {', '.join(sorted(tools_used))}")
else:
print("TOOLS USED: None")
# Abnormal Events
if abnormal_events:
print(f"\nABNORMAL EVENTS: {len(abnormal_events)}")
for event in abnormal_events:
severity = event.get("severity", "UNKNOWN")
event_id = event.get("event_id", "N/A")
print(f" EventID {event_id} [{severity}]")
else:
print("\nNO ABNORMAL EVENTS")
print("=" * 60)
return state
def display_batch_summary(
self, results: List[Dict], start_time: datetime, end_time: datetime
):
"""Print summary of batch processing results"""
total = len(results)
successful = sum(1 for r in results if r["success"])
skipped = sum(1 for r in results if "Skipped" in r["message"])
failed = total - successful
duration = (end_time - start_time).total_seconds()
print("\n" + "=" * 60)
print("BATCH ANALYSIS SUMMARY")
print("=" * 60)
print(f"Total files: {total}")
print(f"Successful: {successful}")
print(f"Skipped: {skipped}")
print(f"Failed: {failed}")
print(f"Total time: {duration:.2f} seconds ({duration/60:.2f} minutes)")
if failed > 0:
print(f"\nFailed files:")
for r in results:
if not r["success"]:
filename = os.path.basename(r["log_file"])
print(f" - {filename}: {r['message']}")
print("=" * 60 + "\n")
def get_existing_output(self, log_file: str) -> Optional[str]:
"""Get the output file path for a given log file if it exists"""
import glob
input_name = os.path.splitext(os.path.basename(log_file))[0]
analysis_dir = self.output_root / input_name
if analysis_dir.exists():
existing_files = list(analysis_dir.glob("analysis_*.json"))
if existing_files:
return str(existing_files[0])
return None
def _serialize_messages(self, messages) -> List[dict]:
"""Serialize messages for JSON storage"""
serializable_messages = []
for msg in messages:
if isinstance(msg, dict):
serializable_messages.append(msg)
else:
msg_dict = {
"type": msg.__class__.__name__,
"content": msg.content if hasattr(msg, "content") else str(msg),
}
if hasattr(msg, "tool_calls") and msg.tool_calls:
msg_dict["tool_calls"] = [
{"name": tc.get("name", ""), "args": tc.get("args", {})}
for tc in msg.tool_calls
]
serializable_messages.append(msg_dict)
return serializable_messages
def _extract_tools_used(self, messages) -> set:
"""Extract set of tool names used during analysis"""
tools_used = set()
for msg in messages:
if hasattr(msg, "tool_calls") and msg.tool_calls:
for tc in msg.tool_calls:
tool_name = tc.get("name", "")
if tool_name:
tools_used.add(tool_name)
return tools_used
|