File size: 43,084 Bytes
9e3d618 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 |
"""
Response Agent - Maps Event IDs to MITRE ATT&CK Techniques and Generates Recommendations
This agent analyzes log analysis results and retrieval intelligence to create explicit
Event ID → MITRE technique mappings with actionable recommendations.
"""
import os
import json
import time
from datetime import datetime
from pathlib import Path
from typing import Dict, Any, List, Tuple
from langchain.chat_models import init_chat_model
# Import prompts from the separate file
from src.agents.response_agent.prompts import CORRELATION_ANALYSIS_PROMPT
class ResponseAgent:
"""
Response Agent that creates explicit Event ID to MITRE technique mappings
and generates actionable recommendations based on correlation analysis.
"""
def __init__(
self,
model_name: str = "google_genai:gemini-2.0-flash",
temperature: float = 0.1,
output_dir: str = "final_response",
llm_client=None,
):
"""
Initialize the Response Agent.
Args:
model_name: LLM model to use
temperature: Temperature for generation
output_dir: Directory to save final response JSON
llm_client: Optional pre-initialized LLM client (overrides model_name/temperature)
"""
if llm_client:
self.llm = llm_client
# Extract model name from llm_client if possible
if hasattr(llm_client, "model_name"):
self.model_name = llm_client.model_name
else:
# Fallback: try to extract from the model string
self.model_name = (
str(llm_client).split("'")[1]
if "'" in str(llm_client)
else "unknown_model"
)
print(f"[INFO] Response Agent: Using provided LLM client")
else:
self.llm = init_chat_model(model_name, temperature=temperature)
self.model_name = model_name
print(f"[INFO] Response Agent: Using default LLM model: {model_name}")
# Create model-specific output directory (strip provider prefixes like
# "google_genai:" or "models/" so we only keep clean names such as
# "gemini-2.0-flash" or "gemini-2.0-flash-lite")
self.model_dir_name = self._sanitize_model_name(self.model_name)
self.output_dir = Path(output_dir) / self.model_dir_name
self.output_dir.mkdir(parents=True, exist_ok=True)
def _sanitize_model_name(self, model_name: str) -> str:
"""
Produce a clean model directory name without provider prefixes.
Examples:
- "google_genai:gemini-2.0-flash" -> "gemini-2.0-flash"
- "google_genai:gemini-2.0-flash-lite" -> "gemini-2.0-flash-lite"
- "models/gemini-2.0-flash-lite" -> "gemini-2.0-flash-lite"
- "groq:gpt-oss-120b" -> "gpt-oss-120b"
"""
raw = (model_name or "").strip()
# Prefer the segment after ":" if present (provider:model)
if ":" in raw:
raw = raw.split(":", 1)[1]
# Then prefer the last path segment after "/" if present (e.g., models/name)
if "/" in raw or "\\" in raw:
raw = raw.replace("\\", "/").split("/")[-1]
# Final sanitation: allow only safe characters
sanitized = "".join(c for c in raw if c.isalnum() or c in "._-")
# Fallback in case the resulting name is empty
return sanitized or "model"
def analyze_and_map(
self,
log_analysis_result: Dict[str, Any],
retrieval_result: Dict[str, Any],
log_file: str,
tactic: str = None,
) -> Dict[str, Any]:
"""
Analyze log analysis and retrieval results to create Event ID mappings.
Args:
log_analysis_result: Results from log analysis agent
retrieval_result: Results from retrieval supervisor
log_file: Path to original log file
tactic: Optional tactic name for organizing output
Returns:
Structured mapping analysis with recommendations
"""
# Extract data for analysis
abnormal_events = log_analysis_result.get("abnormal_events", [])
overall_assessment = log_analysis_result.get("overall_assessment", "UNKNOWN")
# Extract MITRE techniques from retrieval results with improved parsing
mitre_techniques = self._extract_mitre_techniques(retrieval_result)
# Pre-filter techniques based on semantic similarity
relevant_techniques = self._filter_relevant_techniques(
abnormal_events, mitre_techniques
)
# Create analysis prompt
analysis_prompt = self._create_analysis_prompt(
abnormal_events, relevant_techniques, overall_assessment
)
# Get LLM analysis
response = self.llm.invoke(analysis_prompt)
mapping_analysis = self._parse_response(response.content, log_analysis_result)
# Add metadata
mapping_analysis["metadata"] = {
"analysis_timestamp": datetime.now().isoformat(),
"overall_assessment": overall_assessment,
"total_abnormal_events": len(abnormal_events),
"total_techniques_retrieved": len(mitre_techniques),
}
# Save to JSON file
output_path, markdown_report = self._save_response(
mapping_analysis, log_file, tactic
)
return mapping_analysis, markdown_report
def _extract_mitre_techniques(
self, retrieval_result: Dict[str, Any]
) -> List[Dict[str, Any]]:
"""Extract MITRE techniques from structured retrieval supervisor results."""
# NEW APPROACH: Use structured results directly
if "retrieved_techniques" in retrieval_result:
techniques = retrieval_result["retrieved_techniques"]
print(
f"[INFO] Using structured retrieval results: {len(techniques)} techniques"
)
# Ensure all techniques have required fields
validated_techniques = []
for tech in techniques:
# Ensure tactic is a list format
tactic = tech.get("tactic", "")
if isinstance(tactic, str):
# Convert string to list if it's a single tactic
tactic = [tactic] if tactic else []
elif not isinstance(tactic, list):
tactic = []
validated_tech = {
"technique_id": tech.get("technique_id", ""),
"technique_name": tech.get("technique_name", ""),
"tactic": tactic,
"description": tech.get("description", ""),
"relevance_score": tech.get("relevance_score", 0.5),
}
validated_techniques.append(validated_tech)
return validated_techniques
# FALLBACK: Legacy parsing for backward compatibility
print("[WARNING] No structured results found, using legacy message parsing")
return self._extract_mitre_techniques_legacy(retrieval_result)
def _extract_mitre_techniques_legacy(
self, retrieval_result: Dict[str, Any]
) -> List[Dict[str, Any]]:
"""Legacy method to extract MITRE techniques from raw message history."""
techniques = []
messages = retrieval_result.get("messages", [])
# PRIORITY STRATEGY: Extract from database agent tool messages
# These contain the original tactic information before it's lost in formatting
for msg in messages:
# Look for tool messages from search_techniques calls
if (
hasattr(msg, "name")
and msg.name
and "search_techniques" in str(msg.name)
):
if hasattr(msg, "content") and msg.content:
try:
# Parse the tool response
tool_data = (
json.loads(msg.content)
if isinstance(msg.content, str)
else msg.content
)
if "techniques" in tool_data:
for tech in tool_data["techniques"]:
# Convert tactics to list format
tactics = tech.get("tactics", [])
if isinstance(tactics, str):
tactics = [tactics] if tactics else []
elif not isinstance(tactics, list):
tactics = []
converted = {
"technique_id": tech.get("attack_id", ""),
"technique_name": tech.get("name", ""),
"tactic": tactics, # Now as list
"platforms": ", ".join(tech.get("platforms", [])),
"description": tech.get("description", ""),
"relevance_score": tech.get("relevance_score", 0),
}
techniques.append(converted)
except (json.JSONDecodeError, TypeError, AttributeError):
continue
# If we successfully extracted techniques with tactics, use them
if techniques:
print(
f"[INFO] Extracted {len(techniques)} techniques with tactics from database agent"
)
# Remove duplicates
unique_techniques = []
seen_ids = set()
for tech in techniques:
tech_id = tech.get("technique_id")
if tech_id and tech_id not in seen_ids:
seen_ids.add(tech_id)
unique_techniques.append(tech)
return unique_techniques
# FALLBACK: Use original extraction strategies
print(
"[WARNING] Could not extract techniques from tool messages, using fallback extraction"
)
# Strategy 1: Look for the final supervisor message with structured data
for msg in reversed(messages):
if hasattr(msg, "content") and msg.content:
content = msg.content
# Look for different possible JSON structures
json_candidates = self._extract_json_from_content(content)
for json_data in json_candidates:
# Try multiple extraction patterns
extracted = self._try_extraction_patterns(json_data)
if extracted:
techniques.extend(extracted)
break
if techniques:
break
# Strategy 2: Look for tool messages with technique data (already tried above)
if not techniques:
for msg in messages:
if hasattr(msg, "name") and "database" in str(msg.name).lower():
if hasattr(msg, "content"):
tool_techniques = self._extract_from_tool_content(msg.content)
if tool_techniques:
techniques.extend(tool_techniques)
# Strategy 3: Parse any structured content that looks like MITRE data
if not techniques:
for msg in messages:
if hasattr(msg, "content") and msg.content:
general_techniques = self._extract_general_technique_mentions(
msg.content
)
if general_techniques:
techniques.extend(general_techniques)
break
# Remove duplicates based on technique_id
unique_techniques = []
seen_ids = set()
for tech in techniques:
tech_id = (
tech.get("technique_id") or tech.get("attack_id") or tech.get("id")
)
if tech_id and tech_id not in seen_ids:
seen_ids.add(tech_id)
unique_techniques.append(tech)
return unique_techniques
def _extract_json_from_content(self, content: str) -> List[Dict[str, Any]]:
"""Extract all possible JSON objects from content."""
json_candidates = []
# Look for JSON blocks
if "```json" in content:
json_blocks = content.split("```json")
for block in json_blocks[1:]:
json_str = block.split("```")[0].strip()
try:
json_data = json.loads(json_str)
json_candidates.append(json_data)
except json.JSONDecodeError:
continue
# Look for any JSON-like structures
start_idx = 0
while True:
start_idx = content.find("{", start_idx)
if start_idx == -1:
break
# Find matching closing brace
brace_count = 0
end_idx = start_idx
for i in range(start_idx, len(content)):
if content[i] == "{":
brace_count += 1
elif content[i] == "}":
brace_count -= 1
if brace_count == 0:
end_idx = i + 1
break
if brace_count == 0:
json_str = content[start_idx:end_idx]
try:
json_data = json.loads(json_str)
json_candidates.append(json_data)
except json.JSONDecodeError:
pass
start_idx += 1
return json_candidates
def _try_extraction_patterns(
self, json_data: Dict[str, Any]
) -> List[Dict[str, Any]]:
"""Try different patterns to extract MITRE techniques from JSON data."""
techniques = []
# Pattern 1: Original expected format
if "cybersecurity_intelligence" in json_data:
threat_indicators = json_data["cybersecurity_intelligence"].get(
"threat_indicators", []
)
for indicator in threat_indicators:
mitre_techniques = indicator.get("mitre_attack_techniques", [])
techniques.extend(mitre_techniques)
# Pattern 2: Direct techniques list
if "techniques" in json_data:
techniques.extend(json_data["techniques"])
# Pattern 3: MITRE techniques at root level
if "mitre_techniques" in json_data:
techniques.extend(json_data["mitre_techniques"])
# Pattern 4: mitre_attack_techniques array
if "mitre_attack_techniques" in json_data:
techniques.extend(json_data["mitre_attack_techniques"])
# Pattern 5: Database agent response format
if "search_type" in json_data and "techniques" in json_data:
for tech in json_data["techniques"]:
# Convert database agent format to expected format
# Convert tactics to list format
tactics = tech.get("tactics", [])
if isinstance(tactics, str):
tactics = [tactics] if tactics else []
elif not isinstance(tactics, list):
tactics = []
converted = {
"technique_id": tech.get("attack_id", ""),
"technique_name": tech.get("name", ""),
"tactic": tactics, # Now as list
"description": tech.get("description", ""),
}
techniques.append(converted)
# Pattern 6: Look for any structure with attack_id/technique_id
def find_techniques_recursive(obj, path=""):
found = []
if isinstance(obj, dict):
# Check if this looks like a technique
if "technique_id" in obj and "technique_name" in obj:
# Ensure tactic is a list format
tactic = obj.get("tactic", "")
if isinstance(tactic, str):
tactic = [tactic] if tactic else []
elif not isinstance(tactic, list):
tactic = []
technique = {
"technique_id": obj.get("technique_id", ""),
"technique_name": obj.get("technique_name", ""),
"tactic": tactic, # Now as list
"description": obj.get("description", ""),
}
found.append(technique)
elif "attack_id" in obj:
# Convert tactics to list format
tactics = obj.get("tactics", [])
if isinstance(tactics, str):
tactics = [tactics] if tactics else []
elif not isinstance(tactics, list):
tactics = []
converted = {
"technique_id": obj.get("attack_id", ""),
"technique_name": obj.get("name", ""),
"tactic": tactics, # Now as list
"description": obj.get("description", ""),
}
found.append(converted)
# Recurse into nested objects
for key, value in obj.items():
found.extend(find_techniques_recursive(value, f"{path}.{key}"))
elif isinstance(obj, list):
for i, item in enumerate(obj):
found.extend(find_techniques_recursive(item, f"{path}[{i}]"))
return found
techniques.extend(find_techniques_recursive(json_data))
return techniques
def _filter_relevant_techniques(
self, abnormal_events: List[Dict], techniques: List[Dict]
) -> List[Dict]:
"""Filter techniques based on semantic relevance to events."""
if not techniques or not abnormal_events:
return techniques
relevant_techniques = []
# Extract keywords from events for matching
event_keywords = set()
for event in abnormal_events:
desc = event.get("event_description", "").lower()
indicators = [str(ind).lower() for ind in event.get("indicators", [])]
category = event.get("attack_category", "").lower()
threat = event.get("potential_threat", "").lower()
# Add key terms
event_keywords.update(desc.split())
for ind in indicators:
event_keywords.update(ind.split())
if category:
event_keywords.update(category.split())
if threat:
event_keywords.update(threat.split())
# Score techniques based on keyword overlap
for technique in techniques:
tech_name = technique.get("technique_name", "").lower()
tech_desc = technique.get("description", "").lower()
tech_tactic = technique.get("tactic", [])
# Convert tactics to string for keyword matching
if isinstance(tech_tactic, list):
tech_tactic_str = " ".join(tech_tactic).lower()
else:
tech_tactic_str = str(tech_tactic).lower()
# Calculate relevance score
tech_words = set(
tech_name.split() + tech_desc.split() + tech_tactic_str.split()
)
overlap = len(event_keywords.intersection(tech_words))
# Add technique if there's reasonable overlap or if it's a high-value technique
if overlap > 0 or any(
keyword in tech_name or keyword in tech_desc
for keyword in [
"dns",
"registry",
"token",
"privilege",
"port",
"network",
"process",
]
):
technique["relevance_score"] = overlap
relevant_techniques.append(technique)
# Sort by relevance score (descending) and return relevant techniques
relevant_techniques.sort(
key=lambda x: x.get("relevance_score", 0), reverse=True
)
# Dynamic filtering: return techniques with meaningful relevance or minimum threshold
if relevant_techniques:
# Keep techniques with score > 0 or important cybersecurity techniques
filtered = [
t for t in relevant_techniques if t.get("relevance_score", 0) > 0
]
# If we filtered too aggressively, keep at least the most relevant ones
if not filtered and relevant_techniques:
filtered = relevant_techniques[: min(5, len(relevant_techniques))]
# But don't overwhelm the LLM - if we have too many, keep the most relevant
if len(filtered) > 15: # Reasonable upper limit
filtered = filtered[:15]
return filtered
return relevant_techniques # Return all if no filtering worked
def _extract_from_tool_content(self, content: str) -> List[Dict[str, Any]]:
"""Extract techniques from tool message content."""
techniques = []
# Try to parse as JSON first
try:
if isinstance(content, str):
json_data = json.loads(content)
techniques.extend(self._try_extraction_patterns(json_data))
except json.JSONDecodeError:
pass
return techniques
def _extract_general_technique_mentions(self, content: str) -> List[Dict[str, Any]]:
"""Extract technique mentions from general text content."""
techniques = []
# Look for MITRE technique patterns like T1234, T1234.001
import re
# Pattern for MITRE technique IDs
technique_pattern = r"T\d{4}(?:\.\d{3})?"
technique_matches = re.findall(technique_pattern, content)
# Look for technique names in context
for match in technique_matches:
# Try to extract technique name from surrounding context
pattern = rf"{re.escape(match)}[^.]*?([A-Z][a-zA-Z\s]+)"
context_match = re.search(pattern, content)
technique_name = ""
if context_match:
technique_name = context_match.group(1).strip()
technique = {
"technique_id": match,
"technique_name": technique_name,
"tactic": [], # Empty list for unknown tactics
"description": f"Technique {match} mentioned in retrieval results",
}
techniques.append(technique)
return techniques
def _calculate_bayesian_confidence(
self, llm_confidence: float, event_severity: str, total_matched_techniques: int
) -> float:
"""
Bayesian-inspired confidence calculation.
Based on correlation agent's methodology with weighted factors:
- Correlation (50%): LLM-assigned confidence score
- Evidence (25%): Number and quality of matched techniques
- Severity (25%): Event severity level
Args:
llm_confidence: Original confidence score from LLM (0.0-1.0)
event_severity: Severity level (LOW, MEDIUM, HIGH, CRITICAL)
total_matched_techniques: Total number of matched techniques
Returns:
Adjusted confidence score (0.0-0.95)
"""
# Weight distribution based on cybersecurity research
WEIGHTS = {
"correlation": 0.50, # Primary indicator - LLM confidence
"evidence": 0.25, # Evidence strength
"severity": 0.25, # Contextual severity
}
# Severity scores based on CVSS principles
severity_scores = {"CRITICAL": 1.0, "HIGH": 0.85, "MEDIUM": 0.6, "LOW": 0.35}
severity_component = severity_scores.get(event_severity.upper(), 0.6)
# Evidence component with diminishing returns
# More matched techniques increase confidence but with diminishing returns
quantity_factor = min(1.0, 0.5 + (total_matched_techniques * 0.15))
evidence_component = quantity_factor
# Weighted combination
bayesian_confidence = (
WEIGHTS["correlation"] * llm_confidence
+ WEIGHTS["evidence"] * evidence_component
+ WEIGHTS["severity"] * severity_component
)
# Cap at 0.95 to avoid overconfidence bias
bayesian_confidence = min(bayesian_confidence, 0.95)
# Uncertainty penalty for single weak matches
if total_matched_techniques == 1 and llm_confidence < 0.6:
bayesian_confidence *= 0.8
return round(bayesian_confidence, 3)
def _create_analysis_prompt(
self,
abnormal_events: List[Dict],
mitre_techniques: List[Dict],
overall_assessment: str,
) -> str:
"""Create the analysis prompt for the LLM using the template from prompts.py."""
return CORRELATION_ANALYSIS_PROMPT.format(
abnormal_events=json.dumps(abnormal_events, indent=2),
num_techniques=len(mitre_techniques),
mitre_techniques=json.dumps(mitre_techniques, indent=2),
overall_assessment=overall_assessment,
)
def _parse_response(
self, response_content: str, log_analysis_result: Dict[str, Any] = None
) -> Dict[str, Any]:
"""Parse the LLM response, extract JSON, and apply Bayesian confidence adjustment."""
try:
# Try to extract JSON from the response
if "```json" in response_content:
json_str = response_content.split("```json")[1].split("```")[0].strip()
elif "```" in response_content:
json_str = response_content.split("```")[1].split("```")[0].strip()
else:
# Look for JSON-like structure
start_idx = response_content.find("{")
end_idx = response_content.rfind("}") + 1
if start_idx != -1 and end_idx > start_idx:
json_str = response_content[start_idx:end_idx]
else:
json_str = response_content.strip()
result = json.loads(json_str)
# Apply Bayesian confidence adjustment to each mapping
correlation_analysis = result.get("correlation_analysis", {})
direct_mappings = correlation_analysis.get("direct_mappings", [])
if direct_mappings and log_analysis_result:
# Extract overall severity from log analysis
overall_assessment = log_analysis_result.get(
"overall_assessment", "UNKNOWN"
)
# Map overall assessment to severity level
assessment_to_severity = {
"NORMAL": "LOW",
"SUSPICIOUS": "MEDIUM",
"ABNORMAL": "HIGH",
"CRITICAL": "CRITICAL",
}
log_severity = assessment_to_severity.get(overall_assessment, "MEDIUM")
total_matched = len(direct_mappings)
# Apply Bayesian adjustment to each mapping
for mapping in direct_mappings:
llm_confidence = mapping.get("confidence_score", 0.5)
# Calculate Bayesian-adjusted confidence
bayesian_confidence = self._calculate_bayesian_confidence(
llm_confidence=llm_confidence,
event_severity=log_severity,
total_matched_techniques=total_matched,
)
# Store adjusted confidence (overwrite original)
mapping["confidence_score"] = bayesian_confidence
# Optionally store original for debugging (can remove this)
mapping["_original_llm_confidence"] = llm_confidence
return result
except json.JSONDecodeError as e:
print(f"[WARNING] Failed to parse LLM response as JSON: {e}")
# Return a fallback structure
return {
"correlation_analysis": {
"analysis_summary": "Failed to parse response - manual review required",
"mapping_confidence": "LOW",
"total_events_analyzed": 0,
"total_techniques_retrieved": 0,
"retrieval_success": False,
"direct_mappings": [],
"unmapped_events": [],
"overall_recommendations": [
"Review raw response for manual analysis"
],
},
"raw_response": response_content,
}
def _save_response(
self, mapping_analysis: Dict[str, Any], log_file: str, tactic: str = None
) -> Tuple[str, str]:
"""Save the response analysis to both JSON and Markdown files."""
# Generate folder and filenames based on log file
log_filename = Path(log_file).stem
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
# Create tactic-specific subdirectory if tactic is provided
if tactic:
base_output_dir = self.output_dir / tactic
base_output_dir.mkdir(exist_ok=True)
else:
base_output_dir = self.output_dir
# Create subfolder with log name and timestamp
output_folder = base_output_dir / f"{log_filename}_{timestamp}"
output_folder.mkdir(exist_ok=True)
# File paths - use shorter, more readable names
json_filename = "response_analysis.json"
md_filename = "threat_report.md"
json_path = output_folder / json_filename
md_path = output_folder / md_filename
try:
# Save JSON file
with open(json_path, "w", encoding="utf-8") as f:
json.dump(mapping_analysis, f, indent=2, ensure_ascii=False)
# Generate and save Markdown report
markdown_report = self._generate_markdown_report(
mapping_analysis, log_filename
)
with open(md_path, "w", encoding="utf-8") as f:
f.write(markdown_report)
return str(output_folder), markdown_report.strip()
except Exception as e:
print(f"[ERROR] Failed to save response analysis: {e}")
return "", "" # Return empty strings for both paths and report
def _generate_markdown_report(
self, mapping_analysis: Dict[str, Any], log_filename: str
) -> str:
"""Generate a nicely formatted Markdown threat intelligence report."""
correlation = mapping_analysis.get("correlation_analysis", {})
metadata = mapping_analysis.get("metadata", {})
# Start building the Markdown content
md = []
# Header
md.append("# Cybersecurity Threat Intelligence Report\n")
md.append("---\n")
# Metadata section
md.append("## Report Metadata\n")
md.append(f"- **Log File:** `{log_filename}`\n")
md.append(
f"- **Analysis Date:** {metadata.get('analysis_timestamp', 'Unknown')[:19].replace('T', ' ')}\n"
)
# Overall assessment with colored badge
assessment = metadata.get("overall_assessment", "Unknown")
assessment_badge = {
"NORMAL": "NORMAL",
"SUSPICIOUS": "SUSPICIOUS",
"ABNORMAL": "ABNORMAL",
"CRITICAL": "CRITICAL",
}.get(assessment, assessment)
md.append(f"- **Overall Assessment:** {assessment_badge}\n")
md.append(
f"- **Events Analyzed:** {correlation.get('total_events_analyzed', 0)}\n"
)
md.append(
f"- **MITRE Techniques Retrieved:** {correlation.get('total_techniques_retrieved', 0)}\n"
)
# Mapping confidence with badge
confidence = correlation.get("mapping_confidence", "Unknown")
confidence_badge = {"HIGH": "HIGH", "MEDIUM": "MEDIUM", "LOW": "LOW"}.get(
confidence, confidence
)
md.append(f"- **Mapping Confidence:** {confidence_badge}\n")
md.append("\n---\n")
# Executive Summary
md.append("## Executive Summary\n")
md.append(f"{correlation.get('analysis_summary', 'No summary available')}\n")
md.append("\n---\n")
# Event-to-Technique Mappings
mappings = correlation.get("direct_mappings", [])
if mappings:
md.append("## Threat Analysis - Event to MITRE ATT&CK Mappings\n")
for i, mapping in enumerate(mappings, 1):
event_id = mapping.get("event_id", "Unknown")
event_desc = mapping.get("event_description", "No description")
technique = mapping.get("mitre_technique", "Unknown")
technique_name = mapping.get("technique_name", "Unknown")
tactic = mapping.get("tactic", [])
# Convert tactic list to string for display
if isinstance(tactic, list):
tactic_str = ", ".join(tactic) if tactic else "Unknown"
else:
tactic_str = str(tactic) if tactic else "Unknown"
confidence = mapping.get("confidence_score", 0)
rationale = mapping.get("mapping_rationale", "No rationale provided")
# Confidence badge
if confidence >= 0.8:
confidence_badge = f"HIGH ({confidence:.2f})"
elif confidence >= 0.6:
confidence_badge = f"MEDIUM ({confidence:.2f})"
else:
confidence_badge = f"LOW ({confidence:.2f})"
md.append(f"### {i}. Event ID: {event_id}\n")
md.append(f"**Event Description:** {event_desc}\n\n")
md.append(
f"#### MITRE Technique: [{technique}](https://attack.mitre.org/techniques/{technique.replace('.', '/')}/)\n"
)
md.append(f"- **Technique Name:** {technique_name}\n")
md.append(f"- **Tactic:** {tactic_str}\n")
md.append(f"- **Confidence:** {confidence_badge}\n")
md.append("\n")
md.append(f"**Analysis:**\n")
md.append(f"> {rationale}\n")
md.append("\n")
# Recommendations
recommendations = mapping.get("recommendations", [])
if recommendations:
md.append("**Immediate Actions:**\n")
for j, rec in enumerate(recommendations, 1):
md.append(f"{j}. {rec}\n")
md.append("\n")
md.append("---\n")
# Unmapped Events
unmapped = correlation.get("unmapped_events", [])
if unmapped:
md.append("## Unmapped Events\n")
md.append(
"The following events could not be confidently mapped to MITRE techniques:\n\n"
)
for event_id in unmapped:
md.append(f"- Event ID: `{event_id}`\n")
md.append(
"\n> **Note:** These events may require manual analysis or additional context.\n"
)
md.append("\n---\n")
# Priority Matrix
if mappings:
high_priority = [m for m in mappings if m.get("confidence_score", 0) >= 0.7]
medium_priority = [
m for m in mappings if 0.5 <= m.get("confidence_score", 0) < 0.7
]
low_priority = [m for m in mappings if m.get("confidence_score", 0) < 0.5]
md.append("## Priority Matrix\n")
if high_priority:
md.append("### HIGH PRIORITY (Investigate Immediately)\n")
md.append(
"| Event ID | MITRE Technique | Technique Name | Confidence |\n"
)
md.append(
"|----------|-----------------|----------------|------------|\n"
)
for mapping in high_priority:
event_id = mapping.get("event_id", "Unknown")
technique = mapping.get("mitre_technique", "Unknown")
name = mapping.get("technique_name", "Unknown")
conf = mapping.get("confidence_score", 0)
md.append(f"| {event_id} | {technique} | {name} | {conf:.2f} |\n")
md.append("\n")
if medium_priority:
md.append("### MEDIUM PRIORITY (Monitor and Investigate)\n")
md.append(
"| Event ID | MITRE Technique | Technique Name | Confidence |\n"
)
md.append(
"|----------|-----------------|----------------|------------|\n"
)
for mapping in medium_priority:
event_id = mapping.get("event_id", "Unknown")
technique = mapping.get("mitre_technique", "Unknown")
name = mapping.get("technique_name", "Unknown")
conf = mapping.get("confidence_score", 0)
md.append(f"| {event_id} | {technique} | {name} | {conf:.2f} |\n")
md.append("\n")
if low_priority:
md.append("### LOW PRIORITY (Review as Needed)\n")
md.append(
"| Event ID | MITRE Technique | Technique Name | Confidence |\n"
)
md.append(
"|----------|-----------------|----------------|------------|\n"
)
for mapping in low_priority:
event_id = mapping.get("event_id", "Unknown")
technique = mapping.get("mitre_technique", "Unknown")
name = mapping.get("technique_name", "Unknown")
conf = mapping.get("confidence_score", 0)
md.append(f"| {event_id} | {technique} | {name} | {conf:.2f} |\n")
md.append("\n")
md.append("---\n")
# Strategic Recommendations
overall_recs = correlation.get("overall_recommendations", [])
if overall_recs:
md.append("## Strategic Recommendations\n")
for i, rec in enumerate(overall_recs, 1):
md.append(f"{i}. {rec}\n")
md.append("\n---\n")
# Footer
md.append("## Additional Information\n")
md.append(
"- **Report Format:** This report provides event-to-technique correlation analysis\n"
)
md.append(
"- **Technical Details:** See the accompanying JSON file for complete technical data\n"
)
md.append(
"- **MITRE ATT&CK:** Click technique IDs above to view full details on the MITRE ATT&CK website\n"
)
md.append("\n")
md.append("---\n")
md.append("*Report generated by Cybersecurity Multi-Agent Pipeline*\n")
return "".join(md)
def get_stats(self) -> Dict[str, Any]:
"""Get statistics about the response agent."""
return {
"agent_type": "Response Agent",
"model": (
self.llm.model_name if hasattr(self.llm, "model_name") else "Unknown"
),
"output_directory": str(self.output_dir),
"version": "1.2",
}
# Test function for the Response Agent
def test_response_agent():
"""Test the Response Agent with sample data."""
# Sample log analysis result
sample_log_analysis = {
"overall_assessment": "SUSPICIOUS",
"abnormal_events": [
{
"event_id": "5156",
"event_description": "DNS connection to external IP 64.4.48.201",
"severity": "HIGH",
"indicators": ["dns.exe", "64.4.48.201"],
},
{
"event_id": "10",
"event_description": "Token right adjustment for MORDORDC$",
"severity": "HIGH",
"indicators": ["svchost.exe", "token adjustment"],
},
],
}
# Sample retrieval result (simplified)
sample_retrieval = {
"messages": [
type(
"MockMessage",
(),
{
"content": """{"cybersecurity_intelligence": {
"threat_indicators": [
{
"mitre_attack_techniques": [
{
"technique_id": "T1071.004",
"technique_name": "DNS",
"tactic": "Command and Control"
},
{
"technique_id": "T1134",
"technique_name": "Access Token Manipulation",
"tactic": "Privilege Escalation"
}
]
}
]
}}"""
},
)()
]
}
# Initialize and test the agent
agent = ResponseAgent()
result = agent.analyze_and_map(
sample_log_analysis, sample_retrieval, "test_sample.json"
)
print("\nTest completed!")
print(f"Analysis result keys: {list(result.keys())}")
if __name__ == "__main__":
test_response_agent()
|