File size: 30,439 Bytes
9e3d618 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 |
"""
Retrieval Supervisor - Coordinates CTI Agent, Database Agent, and Grader Agent
This supervisor manages the retrieval pipeline for cybersecurity analysis, coordinating
multiple specialized agents to provide comprehensive threat intelligence and MITRE ATT&CK
technique retrieval.
"""
import json
import os
from typing import Dict, Any, List, Optional
from pathlib import Path
from langchain_core.messages import convert_to_messages
# LangGraph and LangChain imports
from langchain_core.messages import HumanMessage, AIMessage, ToolMessage
from langchain.chat_models import init_chat_model
from langgraph.prebuilt import create_react_agent
from langgraph_supervisor import create_supervisor
# Import your agent classes
from src.agents.cti_agent.cti_agent import CTIAgent
from src.agents.database_agent.agent import DatabaseAgent
# Import prompts
from src.agents.retrieval_supervisor.prompts import (
GRADER_AGENT_PROMPT,
SUPERVISOR_PROMPT_TEMPLATE,
INPUT_MESSAGE_TEMPLATE,
LOG_ANALYSIS_SECTION_TEMPLATE,
CONTEXT_SECTION_TEMPLATE,
)
class RetrievalSupervisor:
"""
Retrieval Supervisor that coordinates CTI Agent, Database Agent, and Grader Agent
using LangGraph's supervisor pattern for comprehensive threat intelligence retrieval.
"""
def __init__(
self,
llm_model: str = "google_genai:gemini-2.0-flash",
kb_path: str = "./cyber_knowledge_base",
max_iterations: int = 3,
llm_client=None,
):
"""
Initialize the Retrieval Supervisor.
Args:
llm_model: Specific model to use
kb_path: Path to the cyber knowledge base
max_iterations: Maximum iterations for the retrieval pipeline
llm_client: Optional pre-initialized LLM client (overrides llm_model)
"""
self.max_iterations = max_iterations
self.llm_model = llm_model
# Initialize the supervisor LLM
if llm_client:
self.llm_client = llm_client
print(f"[INFO] Retrieval Supervisor: Using provided LLM client")
elif "gpt-oss" in llm_model:
reasoning_effort = "low"
reasoning_format = "hidden"
self.llm_client = init_chat_model(
llm_model,
temperature=0.1,
reasoning_effort=reasoning_effort,
reasoning_format=reasoning_format,
)
print(
f"[INFO] Retrieval Supervisor: Using GPT-OSS model: {llm_model} with reasoning effort: {reasoning_effort}"
)
else:
self.llm_client = init_chat_model(llm_model, temperature=0.1)
print(f"[INFO] Retrieval Supervisor: Initialized with {llm_model}")
# Initialize agents
# self.cti_agent = self._initialize_cti_agent()
self.database_agent = self._initialize_database_agent(kb_path)
self.grader_agent = self._initialize_grader_agent()
# Create the supervisor
self.supervisor = self._create_supervisor()
def _initialize_cti_agent(self) -> CTIAgent:
"""Initialize the CTI Agent."""
try:
cti_agent = CTIAgent(llm=self.llm_client)
print("CTI Agent initialized successfully")
return cti_agent
except Exception as e:
print(f"Failed to initialize CTI Agent: {e}")
raise
def _initialize_database_agent(self, kb_path: str) -> DatabaseAgent:
"""Initialize the Database Agent."""
try:
database_agent = DatabaseAgent(
kb_path=kb_path,
llm_client=self.llm_client,
)
print("Database Agent initialized successfully")
return database_agent
except Exception as e:
print(f"Failed to initialize Database Agent: {e}")
raise
def _initialize_grader_agent(self):
"""Initialize the Grader Agent as a ReAct agent with no tools."""
return create_react_agent(
model=self.llm_client,
tools=[], # No tools for grader
prompt=GRADER_AGENT_PROMPT,
name="retrieval_grader_agent",
)
def _create_supervisor(self):
"""Create the supervisor using langgraph_supervisor."""
# Prepare agent list with CompiledStateGraph objects
agents = [
self.database_agent.agent, # Database Agent's ReAct agent
self.grader_agent, # Grader Agent (ReAct agent)
]
# Format supervisor prompt with max_iterations
supervisor_prompt = SUPERVISOR_PROMPT_TEMPLATE.format(
max_iterations=self.max_iterations
)
return create_supervisor(
model=self.llm_client,
agents=agents,
prompt=supervisor_prompt,
add_handoff_back_messages=True,
# output_mode="full_history",
supervisor_name="retrieval_supervisor",
).compile(name="retrieval_supervisor")
def invoke(
self,
query: str,
log_analysis_report: Optional[Dict[str, Any]] = None,
context: Optional[str] = None,
trace: bool = False,
) -> Dict[str, Any]:
"""
Invoke the retrieval supervisor pipeline.
Args:
query: The intelligence retrieval query/task
log_analysis_report: Optional log analysis report from log analysis agent
context: Optional additional context
trace: Whether to trace the pipeline
Returns:
Dictionary containing the structured retrieval results
"""
try:
# Build the input message with context
input_content = self._build_input_message(
query, log_analysis_report, context
)
# Initialize state
initial_state = {"messages": [HumanMessage(content=input_content)]}
# print("\n" + "=" * 60)
# print("RETRIEVAL SUPERVISOR PIPELINE STARTING")
# print("=" * 60)
# print(f"Query: {query}")
# if log_analysis_report:
# print(
# f"Log Analysis Report Assessment: {log_analysis_report.get('overall_assessment', 'Unknown')} assessment"
# )
# print()
# Execute the supervisor pipeline
raw_result = self.supervisor.invoke(initial_state)
if trace:
self._print_trace_pipeline(raw_result)
# Parse structured output from the supervisor
structured_result = self._parse_supervisor_output(raw_result, query)
return structured_result
except Exception as e:
print(f"[ERROR] Retrieval Supervisor pipeline failed: {e}")
raise
def invoke_direct_query(self, query: str, trace: bool = False) -> Dict[str, Any]:
"""Invoke the retrieval supervisor pipeline with a direct query."""
raw_result = self.supervisor.invoke({"messages": [HumanMessage(content=query)]})
if trace:
self._print_trace_pipeline(raw_result)
# Parse structured output from the supervisor
structured_result = self._parse_supervisor_output(raw_result, query)
return structured_result
def stream(
self,
query: str,
log_analysis_report: Optional[Dict[str, Any]] = None,
context: Optional[str] = None,
):
# Build the input message with context
input_content = self._build_input_message(query, log_analysis_report, context)
# Initialize state
initial_state = {"messages": [HumanMessage(content=input_content)]}
for chunk in self.supervisor.stream(initial_state, subgraphs=True):
self._pretty_print_messages(chunk, last_message=True)
def _pretty_print_message(self, message, indent=False):
pretty_message = message.pretty_repr(html=True)
if not indent:
print(pretty_message)
return
indented = "\n".join("\t" + c for c in pretty_message.split("\n"))
print(indented)
def _pretty_print_messages(self, update, last_message=False):
is_subgraph = False
if isinstance(update, tuple):
ns, update = update
# skip parent graph updates in the printouts
if len(ns) == 0:
return
graph_id = ns[-1].split(":")[0]
print(f"Update from subgraph {graph_id}:")
print("\n")
is_subgraph = True
for node_name, node_update in update.items():
update_label = f"Update from node {node_name}:"
if is_subgraph:
update_label = "\t" + update_label
print(update_label)
print("\n")
messages = convert_to_messages(node_update["messages"])
if last_message:
messages = messages[-1:]
for m in messages:
self._pretty_print_message(m, indent=is_subgraph)
print("\n")
def _print_trace_pipeline(self, result: Dict[str, Any]):
"""Print detailed trace of the pipeline execution with message flow."""
messages = result.get("messages", [])
if not messages:
print("[TRACE] No messages found in pipeline result")
return
print("\n" + "=" * 60)
print("PIPELINE EXECUTION TRACE")
print("=" * 60)
# Print all messages with detailed formatting
for i, msg in enumerate(messages, 1):
print(f"\n--- Message {i} ---")
if isinstance(msg, HumanMessage):
print(f"[Human] {msg.content}")
elif isinstance(msg, AIMessage):
agent_name = getattr(msg, "name", None) or "agent"
print(f"[Agent:{agent_name}] {msg.content}")
# Check for function calls
if (
hasattr(msg, "additional_kwargs")
and "function_call" in msg.additional_kwargs
):
fc = msg.additional_kwargs["function_call"]
print(f" [ToolCall] {fc.get('name')}: {fc.get('arguments')}")
elif isinstance(msg, ToolMessage):
tool_name = getattr(msg, "name", None) or "tool"
content = (
msg.content if isinstance(msg.content, str) else str(msg.content)
)
# Truncate long content for readability
preview = content[:300] + ("..." if len(content) > 300 else "")
print(f"[Tool:{tool_name}] {preview}")
else:
print(f"[Message] {getattr(msg, 'content', '')}")
# Print final supervisor decision if available
if messages:
latest_message = messages[-1]
if isinstance(latest_message, AIMessage):
print(f"\n--- Final Supervisor Output ---")
print(latest_message.content)
# Check if this looks like a grader decision
if "decision" in latest_message.content.lower():
try:
# Try to parse JSON decision
content = latest_message.content
if "{" in content and "}" in content:
start = content.find("{")
end = content.rfind("}") + 1
decision_json = json.loads(content[start:end])
decision = decision_json.get("decision", "unknown")
print(
f"\n[SUCCESS] Pipeline completed - Decision: {decision}"
)
if decision == "ACCEPT":
print("Results accepted by grader")
elif decision == "NEEDS_MITRE":
print("Additional MITRE technique analysis needed")
except (json.JSONDecodeError, KeyError):
print("\n[INFO] Pipeline completed (decision parsing failed)")
print("\n" + "=" * 60)
print("TRACE COMPLETED")
print("=" * 60)
def _build_input_message(
self,
query: str,
log_analysis_report: Optional[Dict[str, Any]],
context: Optional[str],
) -> str:
"""Build the input message for the supervisor."""
# Build log analysis section
log_analysis_section = ""
if log_analysis_report:
log_analysis_section = LOG_ANALYSIS_SECTION_TEMPLATE.format(
log_analysis_report=json.dumps(log_analysis_report, indent=2)
)
# Build context section
context_section = ""
if context:
context_section = CONTEXT_SECTION_TEMPLATE.format(context=context)
# Build complete input message
input_message = INPUT_MESSAGE_TEMPLATE.format(
query=query,
log_analysis_section=log_analysis_section,
context_section=context_section,
)
return input_message
def _parse_supervisor_output(
self, raw_result: Dict[str, Any], original_query: str
) -> Dict[str, Any]:
"""Parse the supervisor's structured output from the raw result."""
messages = raw_result.get("messages", [])
# Look for the final supervisor message with structured JSON output
final_supervisor_message = None
for msg in reversed(messages):
if (
hasattr(msg, "name")
and msg.name == "supervisor"
and hasattr(msg, "content")
and msg.content
):
final_supervisor_message = msg.content
break
if not final_supervisor_message:
# Fallback: use the last message
if messages:
final_supervisor_message = (
messages[-1].content if hasattr(messages[-1], "content") else ""
)
# Try to extract JSON from the supervisor's final message
structured_output = self._extract_json_from_content(final_supervisor_message)
if structured_output:
# Validate and enhance the structured output
return self._validate_and_enhance_output(
structured_output, original_query, messages
)
else:
# Fallback: create structured output from message analysis
return self._create_fallback_output(messages, original_query)
def _extract_json_from_content(self, content: str) -> Optional[Dict[str, Any]]:
"""Extract JSON from supervisor message content."""
if not content:
return None
# Look for JSON blocks
if "```json" in content:
json_blocks = content.split("```json")
for block in json_blocks[1:]:
json_str = block.split("```")[0].strip()
try:
return json.loads(json_str)
except json.JSONDecodeError:
continue
# Look for any JSON-like structures
start_idx = 0
while True:
start_idx = content.find("{", start_idx)
if start_idx == -1:
break
# Find matching closing brace
brace_count = 0
end_idx = start_idx
for i in range(start_idx, len(content)):
if content[i] == "{":
brace_count += 1
elif content[i] == "}":
brace_count -= 1
if brace_count == 0:
end_idx = i + 1
break
if brace_count == 0:
json_str = content[start_idx:end_idx]
try:
return json.loads(json_str)
except json.JSONDecodeError:
pass
start_idx += 1
return None
def _validate_and_enhance_output(
self, structured_output: Dict[str, Any], original_query: str, messages: List
) -> Dict[str, Any]:
"""Validate and enhance the structured output."""
# Ensure required fields exist
if "status" not in structured_output:
structured_output["status"] = "SUCCESS"
if "final_assessment" not in structured_output:
structured_output["final_assessment"] = "ACCEPTED"
if "retrieved_techniques" not in structured_output:
structured_output["retrieved_techniques"] = []
if "agents_used" not in structured_output:
# Extract agents used from messages
agents_used = set()
for msg in messages:
if hasattr(msg, "name") and msg.name:
agents_used.add(str(msg.name))
structured_output["agents_used"] = list(agents_used)
if "summary" not in structured_output:
technique_count = len(structured_output.get("retrieved_techniques", []))
structured_output["summary"] = (
f"Retrieved {technique_count} MITRE techniques for analysis"
)
if "iteration_count" not in structured_output:
structured_output["iteration_count"] = 1
# Add metadata
structured_output["query"] = original_query
structured_output["total_techniques"] = len(
structured_output.get("retrieved_techniques", [])
)
return structured_output
def _create_fallback_output(
self, messages: List, original_query: str
) -> Dict[str, Any]:
"""Create fallback structured output when JSON parsing fails."""
# Extract techniques from database agent messages
techniques = []
agents_used = set()
for msg in messages:
if hasattr(msg, "name") and msg.name:
agents_used.add(str(msg.name))
# Look for database agent results
if "database" in str(msg.name).lower() and hasattr(msg, "content"):
try:
# Try to extract techniques from tool messages
if hasattr(msg, "name") and "search_techniques" in str(
msg.name
):
tool_data = (
json.loads(msg.content)
if isinstance(msg.content, str)
else msg.content
)
if "techniques" in tool_data:
for tech in tool_data["techniques"]:
# Convert tactics to list format
tactics = tech.get("tactics", [])
if isinstance(tactics, str):
tactics = [tactics] if tactics else []
elif not isinstance(tactics, list):
tactics = []
technique = {
"technique_id": tech.get("attack_id", ""),
"technique_name": tech.get("name", ""),
"tactic": tactics, # Now as list
"description": tech.get("description", ""),
"relevance_score": tech.get(
"relevance_score", 0.5
),
}
techniques.append(technique)
except (json.JSONDecodeError, TypeError, AttributeError):
continue
return {
"status": "PARTIAL",
"final_assessment": "NEEDS_MORE_INFO",
"retrieved_techniques": techniques,
"agents_used": list(agents_used),
"summary": f"Retrieved {len(techniques)} MITRE techniques (fallback parsing)",
"iteration_count": 1,
"query": original_query,
"total_techniques": len(techniques),
"parsing_method": "fallback",
}
def _process_results(
self, result: Dict[str, Any], original_query: str
) -> Dict[str, Any]:
"""Process and format the supervisor results."""
messages = result.get("messages", [])
# Extract information from messages
agents_used = set()
cti_results = []
database_results = []
grader_decisions = []
for msg in messages:
if hasattr(msg, "name"):
agent_name = msg.name
if agent_name: # ignore None or empty
agents_used.add(str(agent_name))
if agent_name == "database_agent":
database_results.append(msg.content)
elif agent_name == "retrieval_grader_agent":
grader_decisions.append(msg.content)
# Get final supervisor message
final_message = ""
for msg in reversed(messages):
if (
isinstance(msg, AIMessage)
and hasattr(msg, "name")
and msg.name == "supervisor"
):
final_message = msg.content
break
# Determine final assessment
final_assessment = self._determine_final_assessment(
grader_decisions, final_message
)
# Extract recommendations
recommendations = self._extract_recommendations(
cti_results, database_results, grader_decisions
)
return {
"status": "SUCCESS",
"query": original_query,
"agents_used": [
a for a in list(agents_used) if isinstance(a, str) and a.strip()
],
"results": {
"cti_intelligence": cti_results,
"mitre_techniques": database_results,
"quality_assessments": grader_decisions,
"supervisor_synthesis": final_message,
},
"final_assessment": final_assessment,
"recommendations": recommendations,
"message_history": messages,
"summary": self._generate_summary(
cti_results, database_results, final_assessment
),
}
def _determine_final_assessment(
self, grader_decisions: List[str], final_message: str
) -> str:
"""Determine the final assessment based on grader decisions."""
# Look for the latest grader decision
if grader_decisions:
latest_decision = grader_decisions[-1]
try:
# Try to parse JSON from grader
if "{" in latest_decision and "}" in latest_decision:
start = latest_decision.find("{")
end = latest_decision.rfind("}") + 1
decision_json = json.loads(latest_decision[start:end])
return decision_json.get("decision", "UNKNOWN")
except json.JSONDecodeError:
pass
# Fallback to content analysis
content = (final_message + " " + " ".join(grader_decisions)).lower()
if "accept" in content:
return "ACCEPTED"
elif "needs_both" in content:
return "NEEDS_BOTH"
elif "needs_cti" in content:
return "NEEDS_CTI"
elif "needs_mitre" in content:
return "NEEDS_MITRE"
else:
return "COMPLETED"
def _extract_recommendations(
self,
cti_results: List[str],
database_results: List[str],
grader_decisions: List[str],
) -> List[str]:
"""Extract actionable recommendations from the results."""
recommendations = []
# Standard recommendations based on results
if cti_results:
recommendations.append("Review CTI findings for threat actor attribution")
recommendations.append("Implement IOC-based detection rules")
if database_results:
recommendations.append("Map detected techniques to defensive controls")
recommendations.append("Update threat hunting playbooks")
# Extract specific recommendations from grader
for decision in grader_decisions:
try:
if "{" in decision and "}" in decision:
start = decision.find("{")
end = decision.rfind("}") + 1
decision_json = json.loads(decision[start:end])
suggestions = decision_json.get("improvement_suggestions", [])
recommendations.extend(suggestions)
except json.JSONDecodeError:
continue
# Remove duplicates and limit
unique_recommendations = list(dict.fromkeys(recommendations))
return unique_recommendations[:5] # Top 5 recommendations
def _generate_summary(
self, cti_results: List[str], database_results: List[str], final_assessment: str
) -> str:
"""Generate a concise summary of the retrieval results."""
summary_parts = [
f"Retrieval Status: {final_assessment}",
f"CTI Sources Analyzed: {len(cti_results)}",
f"MITRE Techniques Retrieved: {len(database_results)}",
]
if cti_results:
summary_parts.append("Threat intelligence gathered from external sources")
if database_results:
summary_parts.append("MITRE ATT&CK techniques mapped to findings")
return " | ".join(summary_parts)
def stream_invoke(
self,
query: str,
log_analysis_report: Optional[Dict[str, Any]] = None,
context: Optional[str] = None,
):
"""
Stream the retrieval supervisor pipeline execution.
Args:
query: The intelligence retrieval query/task
log_analysis_report: Optional log analysis report from log analysis agent
context: Optional additional context
Yields:
Streaming updates from the supervisor pipeline
"""
try:
# Build the input message with context
input_content = self._build_input_message(
query, log_analysis_report, context
)
# Initialize state
initial_state = {"messages": [HumanMessage(content=input_content)]}
# print("\n" + "=" * 60)
# print("RETRIEVAL SUPERVISOR PIPELINE STREAMING")
# print("=" * 60)
# print(f"Query: {query}")
# print()
# Stream the supervisor pipeline
for chunk in self.supervisor.stream(initial_state):
yield chunk
except Exception as e:
yield {"error": str(e)}
# Example usage and testing
def test_retrieval_supervisor():
"""Test the Retrieval Supervisor with sample data."""
# Sample log analysis report
sample_report = {
"overall_assessment": "ABNORMAL",
"total_events_analyzed": 245,
"analysis_summary": "Detected suspicious PowerShell execution with base64 encoding and potential credential access attempts targeting LSASS process",
"abnormal_events": [
{
"event_id": "4688",
"event_description": "PowerShell process creation with encoded command parameter",
"why_abnormal": "Base64 encoded command suggests obfuscation and evasion techniques",
"severity": "HIGH",
"potential_threat": "Defense evasion or malware execution",
"attack_category": "defense_evasion",
},
{
"event_id": "4656",
"event_description": "Handle request to LSASS process memory",
"why_abnormal": "Unusual access pattern to sensitive authentication process",
"severity": "CRITICAL",
"potential_threat": "Credential dumping attack",
"attack_category": "credential_access",
},
],
}
try:
# Initialize supervisor
supervisor = RetrievalSupervisor()
# Test query
query = "Analyze the detected PowerShell and LSASS access patterns. Provide threat intelligence on related attack campaigns and map to MITRE ATT&CK techniques."
# Execute retrieval with trace enabled
results = supervisor.invoke(
query=query,
log_analysis_report=sample_report,
context="High-priority security incident requiring immediate threat intelligence",
trace=True,
)
# Display results
print("=" * 60)
print("RETRIEVAL RESULTS SUMMARY")
print("=" * 60)
print(f"Status: {results['status']}")
print(f"Final Assessment: {results['final_assessment']}")
print(f"Agents Used: {', '.join(results['agents_used'])}")
print(f"\nSummary: {results['summary']}")
print("\nRecommendations:")
for i, rec in enumerate(results["recommendations"], 1):
print(f"{i}. {rec}")
return results
except Exception as e:
print(f"Test failed: {e}")
return None
if __name__ == "__main__":
test_retrieval_supervisor()
|