minhan6559's picture
Upload 101 files
e4932aa verified
raw
history blame
25.1 kB
import re
import json
import os
from typing import List, Set, Dict, Tuple
from pathlib import Path
import pandas as pd
from dotenv import load_dotenv
# Import your CTI tools
from langchain.chat_models import init_chat_model
from langchain_tavily import TavilySearch
import sys
sys.path.append("src/agents/cti_agent")
from cti_tools import CTITools
from config import MODEL_NAME, CTI_SEARCH_CONFIG
class CTIToolsEvaluator:
"""Evaluator for CTI tools on CTIBench benchmarks."""
def __init__(self):
"""Initialize the evaluator with CTI tools."""
load_dotenv()
# Initialize LLM
self.llm = init_chat_model(MODEL_NAME, temperature=0.1)
# Initialize search (needed for CTITools init, even if not used in evaluation)
search_config = {**CTI_SEARCH_CONFIG, "api_key": os.getenv("TAVILY_API_KEY")}
self.cti_search = TavilySearch(**search_config)
# Initialize CTI Tools
self.cti_tools = CTITools(self.llm, self.cti_search)
# Storage for results
self.ate_results = []
self.taa_results = []
# ==================== CTI-ATE: MITRE Technique Extraction Tool ====================
def extract_technique_ids(self, text: str) -> Set[str]:
"""
Extract MITRE technique IDs from text.
Looks for patterns like T1234 (main techniques only, no subtechniques).
Args:
text: Text containing technique IDs
Returns:
Set of technique IDs (e.g., {'T1071', 'T1059'})
"""
# Pattern for main techniques only (T#### not T####.###)
pattern = r"\bT\d{4}\b"
matches = re.findall(pattern, text)
return set(matches)
def calculate_ate_metrics(
self, predicted: Set[str], ground_truth: Set[str]
) -> Dict[str, float]:
"""
Calculate precision, recall, and F1 score for technique extraction.
Args:
predicted: Set of predicted technique IDs
ground_truth: Set of ground truth technique IDs
Returns:
Dictionary with precision, recall, f1, tp, fp, fn
"""
tp = len(predicted & ground_truth) # True positives
fp = len(predicted - ground_truth) # False positives
fn = len(ground_truth - predicted) # False negatives
precision = tp / len(predicted) if len(predicted) > 0 else 0.0
recall = tp / len(ground_truth) if len(ground_truth) > 0 else 0.0
f1 = (
2 * (precision * recall) / (precision + recall)
if (precision + recall) > 0
else 0.0
)
return {
"precision": precision,
"recall": recall,
"f1": f1,
"tp": tp,
"fp": fp,
"fn": fn,
"predicted_count": len(predicted),
"ground_truth_count": len(ground_truth),
}
def evaluate_mitre_extraction_tool(
self,
sample_id: str,
description: str,
ground_truth: str,
platform: str = "Enterprise",
) -> Dict:
"""
Evaluate extract_mitre_techniques tool on a single sample.
Args:
sample_id: Sample identifier (e.g., URL)
description: Malware/report description to analyze
ground_truth: Ground truth technique IDs (comma-separated)
platform: MITRE platform (Enterprise, Mobile, ICS)
Returns:
Dictionary with evaluation metrics
"""
print(f"Evaluating {sample_id[:60]}...")
# Call the extract_mitre_techniques tool
tool_output = self.cti_tools.extract_mitre_techniques(description, platform)
# Extract technique IDs from tool output
predicted_ids = self.extract_technique_ids(tool_output)
gt_ids = set([t.strip() for t in ground_truth.split(",") if t.strip()])
# Calculate metrics
metrics = self.calculate_ate_metrics(predicted_ids, gt_ids)
result = {
"sample_id": sample_id,
"platform": platform,
"description": description[:100] + "...",
"tool_output": tool_output[:500] + "...", # Truncate for storage
"predicted": sorted(predicted_ids),
"ground_truth": sorted(gt_ids),
"missing": sorted(gt_ids - predicted_ids), # False negatives
"extra": sorted(predicted_ids - gt_ids), # False positives
**metrics,
}
self.ate_results.append(result)
return result
def evaluate_ate_from_tsv(
self, filepath: str = "cti-bench/data/cti-ate.tsv", limit: int = None
) -> pd.DataFrame:
"""
Evaluate extract_mitre_techniques tool on CTI-ATE benchmark.
Args:
filepath: Path to CTI-ATE TSV file
limit: Optional limit on number of samples to evaluate
Returns:
DataFrame with results for each sample
"""
print(f"\n{'='*80}")
print(f"Evaluating extract_mitre_techniques tool on CTI-ATE benchmark")
print(f"{'='*80}\n")
# Load benchmark
df = pd.read_csv(filepath, sep="\t")
if limit:
df = df.head(limit)
print(f"Loaded {len(df)} samples from {filepath}")
print(f"Starting evaluation...\n")
# Evaluate each sample
for idx, row in df.iterrows():
try:
self.evaluate_mitre_extraction_tool(
sample_id=row["URL"],
description=row["Description"],
ground_truth=row["GT"],
platform=row["Platform"],
)
except Exception as e:
print(f"Error on sample {idx}: {e}")
continue
results_df = pd.DataFrame(self.ate_results)
print(f"\nCompleted evaluation of {len(self.ate_results)} samples")
return results_df
def get_ate_summary(self) -> Dict:
"""
Get summary statistics for CTI-ATE evaluation.
Returns:
Dictionary with macro and micro averaged metrics
"""
if not self.ate_results:
return {}
df = pd.DataFrame(self.ate_results)
# Macro averages (average of per-sample metrics)
macro_metrics = {
"macro_precision": df["precision"].mean(),
"macro_recall": df["recall"].mean(),
"macro_f1": df["f1"].mean(),
}
# Micro averages (calculated from total TP, FP, FN)
total_tp = df["tp"].sum()
total_fp = df["fp"].sum()
total_fn = df["fn"].sum()
total_predicted = df["predicted_count"].sum()
total_gt = df["ground_truth_count"].sum()
micro_precision = total_tp / total_predicted if total_predicted > 0 else 0.0
micro_recall = total_tp / total_gt if total_gt > 0 else 0.0
micro_f1 = (
2 * (micro_precision * micro_recall) / (micro_precision + micro_recall)
if (micro_precision + micro_recall) > 0
else 0.0
)
micro_metrics = {
"micro_precision": micro_precision,
"micro_recall": micro_recall,
"micro_f1": micro_f1,
"total_samples": len(self.ate_results),
"total_tp": int(total_tp),
"total_fp": int(total_fp),
"total_fn": int(total_fn),
}
return {**macro_metrics, **micro_metrics}
# ==================== CTI-TAA: Threat Actor Attribution Tool ====================
def normalize_actor_name(self, name: str) -> str:
"""
Normalize threat actor names for comparison.
Args:
name: Threat actor name
Returns:
Normalized name (lowercase, trimmed)
"""
if not name:
return ""
# Convert to lowercase and strip
normalized = name.lower().strip()
# Remove common prefixes
prefixes = ["apt", "apt-", "group", "the "]
for prefix in prefixes:
if normalized.startswith(prefix):
normalized = normalized[len(prefix) :].strip()
return normalized
def extract_actor_from_output(self, text: str) -> str:
"""
Extract threat actor name from tool output.
Args:
text: Tool output text
Returns:
Extracted actor name or empty string
"""
# Look for Q&A format from our updated prompt
qa_patterns = [
r"Q:\s*What threat actor.*?\n\s*A:\s*([^\n]+)",
r"threat actor.*?is[:\s]+([A-Z][A-Za-z0-9\s\-]+?)(?:\s*\(|,|\.|$)",
r"attributed to[:\s]+([A-Z][A-Za-z0-9\s\-]+?)(?:\s*\(|,|\.|$)",
]
for pattern in qa_patterns:
match = re.search(pattern, text, re.IGNORECASE | re.MULTILINE)
if match:
actor = match.group(1).strip()
# Clean up common artifacts
actor = actor.split("(")[0].strip() # Remove parenthetical aliases
if actor and actor.lower() not in [
"none",
"none identified",
"unknown",
"not specified",
]:
return actor
return ""
def check_actor_match(
self, predicted: str, ground_truth: str, aliases: Dict[str, List[str]] = None
) -> bool:
"""
Check if predicted actor matches ground truth, considering aliases.
Args:
predicted: Predicted threat actor name
ground_truth: Ground truth threat actor name
aliases: Optional dictionary mapping canonical names to aliases
Returns:
True if match, False otherwise
"""
pred_norm = self.normalize_actor_name(predicted)
gt_norm = self.normalize_actor_name(ground_truth)
if not pred_norm or not gt_norm:
return False
# Direct match
if pred_norm == gt_norm:
return True
# Check aliases if provided
if aliases:
# Check if prediction is in ground truth's aliases
if gt_norm in aliases:
for alias in aliases[gt_norm]:
if pred_norm == self.normalize_actor_name(alias):
return True
# Check if ground truth is in prediction's aliases
if pred_norm in aliases:
for alias in aliases[pred_norm]:
if gt_norm == self.normalize_actor_name(alias):
return True
return False
def evaluate_threat_actor_tool(
self,
sample_id: str,
report_text: str,
ground_truth: str,
aliases: Dict[str, List[str]] = None,
) -> Dict:
"""
Evaluate identify_threat_actors tool on a single sample.
Args:
sample_id: Sample identifier (e.g., URL)
report_text: Threat report text to analyze
ground_truth: Ground truth threat actor name
aliases: Optional alias dictionary for matching
Returns:
Dictionary with evaluation result
"""
print(f"Evaluating {sample_id[:60]}...")
# Call the identify_threat_actors tool
tool_output = self.cti_tools.identify_threat_actors(report_text)
# Extract predicted actor
predicted_actor = self.extract_actor_from_output(tool_output)
# Check if match
is_correct = self.check_actor_match(predicted_actor, ground_truth, aliases)
result = {
"sample_id": sample_id,
"report_snippet": report_text[:100] + "...",
"tool_output": tool_output[:500] + "...", # Truncate for storage
"predicted_actor": predicted_actor,
"ground_truth": ground_truth,
"correct": is_correct,
}
self.taa_results.append(result)
return result
def evaluate_taa_from_tsv(
self,
filepath: str = "cti-bench/data/cti-taa.tsv",
limit: int = None,
interactive: bool = True,
) -> pd.DataFrame:
"""
Evaluate identify_threat_actors tool on CTI-TAA benchmark.
Since CTI-TAA has no ground truth labels, this generates predictions
that need manual validation.
Args:
filepath: Path to CTI-TAA TSV file
limit: Optional limit on number of samples to evaluate
interactive: If True, prompts for manual validation after each prediction
Returns:
DataFrame with results for each sample
"""
print(f"\n{'='*80}")
print(f"Evaluating identify_threat_actors tool on CTI-TAA benchmark")
print(f"{'='*80}\n")
if not interactive:
print("NOTE: Running in non-interactive mode.")
print("Predictions will be saved for manual review later.")
else:
print("NOTE: Running in interactive mode.")
print("You will be asked to validate each prediction (y/n/s to skip).")
# Load benchmark
df = pd.read_csv(filepath, sep="\t")
if limit:
df = df.head(limit)
print(f"\nLoaded {len(df)} samples from {filepath}")
print(f"Starting evaluation...\n")
# Evaluate each sample
for idx, row in df.iterrows():
try:
print(f"\n{'-'*80}")
print(f"Sample {idx + 1}/{len(df)}")
print(f"URL: {row['URL']}")
print(f"Report snippet: {row['Text'][:200]}...")
print(f"{'-'*80}")
# Call the identify_threat_actors tool
tool_output = self.cti_tools.identify_threat_actors(row["Text"])
# Extract predicted actor
predicted_actor = self.extract_actor_from_output(tool_output)
print(f"\nTOOL OUTPUT:")
print(tool_output[:600])
if len(tool_output) > 600:
print("... (truncated)")
print(
f"\nEXTRACTED ACTOR: {predicted_actor if predicted_actor else '(none detected)'}"
)
# Manual validation
is_correct = None
validator_notes = ""
if interactive:
print(f"\nIs this attribution correct?")
print(f" y = Yes, correct")
print(f" n = No, incorrect")
print(
f" p = Partially correct (e.g., right family but wrong specific group)"
)
print(f" s = Skip this sample")
print(f" q = Quit evaluation")
while True:
response = input("\nYour answer [y/n/p/s/q]: ").strip().lower()
if response == "y":
is_correct = True
break
elif response == "n":
is_correct = False
correct_actor = input(
"What is the correct actor? (optional): "
).strip()
if correct_actor:
validator_notes = f"Correct actor: {correct_actor}"
break
elif response == "p":
is_correct = 0.5 # Partial credit
note = input("Explanation (optional): ").strip()
if note:
validator_notes = f"Partially correct: {note}"
break
elif response == "s":
print("Skipping this sample...")
break
elif response == "q":
print("Quitting evaluation...")
return pd.DataFrame(self.taa_results)
else:
print("Invalid response. Please enter y, n, p, s, or q.")
# Store result
result = {
"sample_id": row["URL"],
"report_snippet": row["Text"][:100] + "...",
"tool_output": tool_output[:500] + "...",
"predicted_actor": predicted_actor,
"is_correct": is_correct,
"validator_notes": validator_notes,
"needs_review": is_correct is None,
}
self.taa_results.append(result)
except Exception as e:
print(f"Error on sample {idx}: {e}")
continue
results_df = pd.DataFrame(self.taa_results)
print(f"\n{'='*80}")
print(f"Completed evaluation of {len(self.taa_results)} samples")
if interactive:
validated = sum(1 for r in self.taa_results if r["is_correct"] is not None)
print(f"Validated: {validated}/{len(self.taa_results)}")
return results_df
def _extract_ground_truths_from_urls(self, urls: List[str]) -> Dict[str, str]:
"""
Extract ground truth actor names from URLs.
Args:
urls: List of URLs from the benchmark
Returns:
Dictionary mapping URL to actor name
"""
# Known threat actors and their URL patterns
actor_patterns = {
"sidecopy": "SideCopy",
"apt29": "APT29",
"apt36": "APT36",
"transparent-tribe": "Transparent Tribe",
"emotet": "Emotet",
"bandook": "Bandook",
"stately-taurus": "Stately Taurus",
"mustang-panda": "Mustang Panda",
"bronze-president": "Bronze President",
"cozy-bear": "APT29",
"nobelium": "APT29",
}
ground_truths = {}
for url in urls:
url_lower = url.lower()
for pattern, actor in actor_patterns.items():
if pattern in url_lower:
ground_truths[url] = actor
break
return ground_truths
def get_taa_summary(self) -> Dict:
"""
Get summary statistics for CTI-TAA evaluation.
Returns:
Dictionary with accuracy and validation status
"""
if not self.taa_results:
return {}
df = pd.DataFrame(self.taa_results)
# Only calculate metrics for validated samples
validated_df = df[df["is_correct"].notna()]
if len(validated_df) == 0:
return {
"total_samples": len(df),
"validated_samples": 0,
"needs_review": len(df),
"message": "No samples have been validated yet",
}
# Calculate accuracy (treating partial credit as 0.5)
total_score = validated_df["is_correct"].sum()
accuracy = total_score / len(validated_df) if len(validated_df) > 0 else 0.0
# Count correct, incorrect, partial
correct = sum(1 for x in validated_df["is_correct"] if x == True)
incorrect = sum(1 for x in validated_df["is_correct"] if x == False)
partial = sum(1 for x in validated_df["is_correct"] if x == 0.5)
return {
"accuracy": accuracy,
"total_samples": len(df),
"validated_samples": len(validated_df),
"needs_review": len(df) - len(validated_df),
"correct": correct,
"incorrect": incorrect,
"partial": partial,
}
# ==================== Utility Functions ====================
def export_results(self, output_dir: str = "./tool_evaluation_results"):
"""
Export evaluation results to CSV and JSON files.
Args:
output_dir: Directory to save results
"""
output_path = Path(output_dir)
output_path.mkdir(exist_ok=True)
if self.ate_results:
ate_df = pd.DataFrame(self.ate_results)
ate_df.to_csv(
output_path / "extract_mitre_techniques_results.csv", index=False
)
ate_summary = self.get_ate_summary()
with open(output_path / "extract_mitre_techniques_summary.json", "w") as f:
json.dump(ate_summary, f, indent=2)
print(f"ATE results saved to {output_path}")
if self.taa_results:
taa_df = pd.DataFrame(self.taa_results)
taa_df.to_csv(
output_path / "identify_threat_actors_results.csv", index=False
)
taa_summary = self.get_taa_summary()
with open(output_path / "identify_threat_actors_summary.json", "w") as f:
json.dump(taa_summary, f, indent=2)
print(f"TAA results saved to {output_path}")
def print_summary(self):
"""Print summary of both tool evaluations."""
print("\n" + "=" * 80)
print("extract_mitre_techniques Tool Evaluation (CTI-ATE)")
print("=" * 80)
ate_summary = self.get_ate_summary()
if ate_summary:
print(f"Total Samples: {ate_summary['total_samples']}")
print(f"\nMacro Averages (per-sample average):")
print(f" Precision: {ate_summary['macro_precision']:.4f}")
print(f" Recall: {ate_summary['macro_recall']:.4f}")
print(f" F1 Score: {ate_summary['macro_f1']:.4f}")
print(f"\nMicro Averages (overall corpus):")
print(f" Precision: {ate_summary['micro_precision']:.4f}")
print(f" Recall: {ate_summary['micro_recall']:.4f}")
print(f" F1 Score: {ate_summary['micro_f1']:.4f}")
print(f"\nConfusion Matrix:")
print(f" True Positives: {ate_summary['total_tp']}")
print(f" False Positives: {ate_summary['total_fp']}")
print(f" False Negatives: {ate_summary['total_fn']}")
else:
print("No results available.")
print("\n" + "=" * 80)
print("identify_threat_actors Tool Evaluation (CTI-TAA)")
print("=" * 80)
taa_summary = self.get_taa_summary()
if taa_summary:
print(f"Total Samples: {taa_summary['total_samples']}")
print(
f"Accuracy: {taa_summary['accuracy']:.4f} ({taa_summary['accuracy']*100:.2f}%)"
)
print(f"Correct: {taa_summary['correct']}")
print(f"Incorrect: {taa_summary['incorrect']}")
else:
print("No results available.")
print("=" * 80 + "\n")
# ==================== Main Evaluation Script ====================
if __name__ == "__main__":
"""Run evaluation on both CTI tools."""
# Initialize evaluator
print("Initializing CTI Tools Evaluator...")
evaluator = CTIToolsEvaluator()
# Define threat actor aliases for TAA evaluation
aliases = {
"apt29": ["cozy bear", "the dukes", "nobelium", "yttrium"],
"apt36": ["transparent tribe", "mythic leopard"],
"sidecopy": [],
"emotet": [],
"stately taurus": ["mustang panda", "bronze president"],
"bandook": [],
}
# Evaluate extract_mitre_techniques tool (CTI-ATE)
print("\n" + "=" * 80)
print("PART 1: Evaluating extract_mitre_techniques tool")
print("=" * 80)
try:
ate_results = evaluator.evaluate_ate_from_tsv(
filepath="cti-bench/data/cti-ate.tsv"
)
except Exception as e:
print(f"Error evaluating ATE: {e}")
# Evaluate identify_threat_actors tool (CTI-TAA)
print("\n" + "=" * 80)
print("PART 2: Evaluating identify_threat_actors tool")
print("=" * 80)
try:
taa_results = evaluator.evaluate_taa_from_tsv(
filepath="cti-bench/data/cti-taa.tsv", limit=25, interactive=True
)
except Exception as e:
print(f"Error evaluating TAA: {e}")
# Print summary
evaluator.print_summary()
# Export results
evaluator.export_results("./tool_evaluation_results")
print("\nEvaluation complete! Results saved to ./tool_evaluation_results/")