minhan6559's picture
Upload 73 files
60d1d13 verified
raw
history blame
16.3 kB
"""
LangGraph Agent State and Processing Nodes
"""
from typing import Dict, List, Optional, TypedDict, Annotated
from langchain.schema import Document
from langchain_core.messages import AnyMessage
from langgraph.graph.message import add_messages
import json
import re
from src.agent.prompts import (
INTENT_CLASSIFICATION_PROMPT,
QUERY_ENHANCEMENT_PROMPT,
RESPONSE_GENERATION_PROMPT,
get_system_prompt_by_intent,
)
class ViettelPayState(TypedDict):
"""State for ViettelPay agent workflow with message history support"""
# Message history for multi-turn conversation
messages: Annotated[List[AnyMessage], add_messages]
# Processing
intent: Optional[str]
confidence: Optional[float]
# Query enhancement
enhanced_query: Optional[str]
# Knowledge retrieval
retrieved_docs: Optional[List[Document]]
# Conversation context (cached to avoid repeated computation)
conversation_context: Optional[str]
# Response type metadata
response_type: Optional[str] # "script" or "generated"
# Metadata
error: Optional[str]
processing_info: Optional[Dict]
def get_conversation_context(messages: List[AnyMessage], max_messages: int = 3) -> str:
"""
Extract conversation context from message history
Args:
messages: List of conversation messages
max_messages: Maximum number of recent messages to include
Returns:
Formatted conversation context string
"""
if len(messages) <= 1:
return ""
context = "\n\nLịch sử cuộc hội thoại:\n"
# Get recent messages (excluding the current/last message for intent classification)
recent_messages = messages[
-(max_messages + 1) : -1
] # Exclude the very last message
for msg in recent_messages:
# Handle different message types more robustly
if hasattr(msg, "type"):
if msg.type == "human":
role = "Người dùng"
elif msg.type == "ai":
role = "Trợ lý"
else:
role = f"Unknown-{msg.type}"
elif hasattr(msg, "role"):
if msg.role in ["user", "human"]:
role = "Người dùng"
elif msg.role in ["assistant", "ai"]:
role = "Trợ lý"
else:
role = f"Unknown-{msg.role}"
else:
role = "Unknown"
# Limit message length to avoid token overflow
# content = msg.content[:1000] + "..." if len(msg.content) > 1000 else msg.content
content = msg.content
context += f"{role}: {content}\n"
# print(context)
return context
def classify_intent_node(state: ViettelPayState, llm_client) -> ViettelPayState:
"""Node for intent classification using LLM with conversation context"""
# Get the latest user message
messages = state["messages"]
if not messages:
return {
**state,
"intent": "unclear",
"confidence": 0.0,
"error": "No messages found",
}
# Find the last human/user message
user_message = None
for msg in reversed(messages):
if hasattr(msg, "type") and msg.type == "human":
user_message = msg.content
break
elif hasattr(msg, "role") and msg.role == "user":
user_message = msg.content
break
if not user_message:
return {
**state,
"intent": "unclear",
"confidence": 0.0,
"error": "No user message found",
}
try:
# Get conversation context for better intent classification
conversation_context = get_conversation_context(messages)
# Intent classification prompt with context using the prompts file
classification_prompt = INTENT_CLASSIFICATION_PROMPT.format(
conversation_context=conversation_context, user_message=user_message
)
# Get classification using the pre-initialized LLM client
response = llm_client.generate(classification_prompt, temperature=0.1)
# print(f"🔍 Raw LLM response: {response}")
# Parse JSON response
try:
# Try to extract JSON from response (in case there's extra text)
response_clean = response.strip()
# Look for JSON object in the response
json_match = re.search(r"\{.*\}", response_clean, re.DOTALL)
if json_match:
json_str = json_match.group()
result = json.loads(json_str)
else:
# Try parsing the whole response
result = json.loads(response_clean)
intent = result.get("intent", "unclear")
confidence = result.get("confidence", 0.5)
explanation = result.get("explanation", "")
# print(
# f"✅ JSON parsed successfully: intent={intent}, confidence={confidence}"
# )
except (json.JSONDecodeError, AttributeError) as e:
print(f"❌ JSON parsing failed: {e}")
print(f" Raw response: {response}")
# Fallback: try to extract intent from text
response_lower = response.lower()
if any(
word in response_lower for word in ["lỗi", "error", "606", "mã lỗi"]
):
intent = "error_help"
confidence = 0.7
elif any(word in response_lower for word in ["xin chào", "hello", "chào"]):
intent = "greeting"
confidence = 0.8
elif any(word in response_lower for word in ["hủy", "cancel", "thủ tục"]):
intent = "procedure_guide"
confidence = 0.7
elif any(
word in response_lower for word in ["nạp", "cước", "dịch vụ", "faq"]
):
intent = "faq"
confidence = 0.7
else:
intent = "unclear"
confidence = 0.3
print(f"🔄 Fallback classification: {intent} (confidence: {confidence})")
explanation = "Fallback classification due to JSON parse error"
# print(f"🎯 Intent classified: {intent} (confidence: {confidence})")
return {
**state,
"intent": intent,
"confidence": confidence,
"conversation_context": conversation_context, # Save context for reuse
"processing_info": {
"classification_raw": response,
"explanation": explanation,
"context_used": bool(conversation_context.strip()),
},
}
except Exception as e:
print(f"❌ Intent classification error: {e}")
return {**state, "intent": "unclear", "confidence": 0.0, "error": str(e)}
def query_enhancement_node(state: ViettelPayState, llm_client) -> ViettelPayState:
"""Node for enhancing search query using conversation context"""
# Get the latest user message
messages = state["messages"]
if not messages:
return {**state, "enhanced_query": "", "error": "No messages found"}
# Find the last human/user message
user_message = None
for msg in reversed(messages):
if hasattr(msg, "type") and msg.type == "human":
user_message = msg.content
break
elif hasattr(msg, "role") and msg.role == "user":
user_message = msg.content
break
if not user_message:
return {**state, "enhanced_query": "", "error": "No user message found"}
try:
# Use saved conversation context if available, otherwise get it
conversation_context = state.get("conversation_context")
if conversation_context is None:
conversation_context = get_conversation_context(messages)
# If no context, use original message
if not conversation_context.strip():
print(f"🔍 No context available, using original query: {user_message}")
return {**state, "enhanced_query": user_message}
# Query enhancement prompt using the prompts file
enhancement_prompt = QUERY_ENHANCEMENT_PROMPT.format(
conversation_context=conversation_context, user_message=user_message
)
# Get enhanced query
enhanced_query = llm_client.generate(enhancement_prompt, temperature=0.1)
enhanced_query = enhanced_query.strip()
print(f"🔍 Original query: {user_message}")
print(f"🚀 Enhanced query: {enhanced_query}")
return {**state, "enhanced_query": enhanced_query}
except Exception as e:
print(f"❌ Query enhancement error: {e}")
# Fallback to original message
return {**state, "enhanced_query": user_message, "error": str(e)}
def knowledge_retrieval_node(
state: ViettelPayState, knowledge_retriever
) -> ViettelPayState:
"""Node for knowledge retrieval using pre-initialized ViettelKnowledgeBase"""
# Use enhanced query if available, otherwise fall back to extracting from messages
enhanced_query = state.get("enhanced_query", "")
if not enhanced_query:
# Fallback: extract from messages
messages = state["messages"]
if not messages:
return {**state, "retrieved_docs": [], "error": "No messages found"}
# Find the last human/user message
for msg in reversed(messages):
if hasattr(msg, "type") and msg.type == "human":
enhanced_query = msg.content
break
elif hasattr(msg, "role") and msg.role == "user":
enhanced_query = msg.content
break
if not enhanced_query:
return {**state, "retrieved_docs": [], "error": "No query available"}
try:
if not knowledge_retriever:
raise ValueError("Knowledge retriever not available")
# Retrieve relevant documents using enhanced query and pre-initialized ViettelKnowledgeBase
retrieved_docs = knowledge_retriever.search(enhanced_query, top_k=10)
print(
f"📚 Retrieved {len(retrieved_docs)} documents for enhanced query: {enhanced_query}"
)
return {**state, "retrieved_docs": retrieved_docs}
except Exception as e:
print(f"❌ Knowledge retrieval error: {e}")
return {**state, "retrieved_docs": [], "error": str(e)}
def script_response_node(state: ViettelPayState) -> ViettelPayState:
"""Node for script-based responses"""
from src.agent.scripts import ConversationScripts
from langchain_core.messages import AIMessage
intent = state.get("intent", "")
try:
# Load scripts
scripts = ConversationScripts("./viettelpay_docs/processed/kich_ban.csv")
# Map intents to script types
intent_to_script = {
"greeting": "greeting",
"out_of_scope": "out_of_scope",
"human_request": "human_request_attempt_1", # Could be enhanced later
"unclear": "ask_for_clarity",
}
script_type = intent_to_script.get(intent)
if script_type and scripts.has_script(script_type):
response_text = scripts.get_script(script_type)
print(f"📋 Using script response: {script_type}")
# Add AI message to the conversation
ai_message = AIMessage(content=response_text)
return {**state, "messages": [ai_message], "response_type": "script"}
else:
# Fallback script
fallback_response = (
"Xin lỗi, em chưa hiểu rõ yêu cầu của anh/chị. Vui lòng thử lại."
)
ai_message = AIMessage(content=fallback_response)
print(f"📋 Using fallback script for intent: {intent}")
return {**state, "messages": [ai_message], "response_type": "script"}
except Exception as e:
print(f"❌ Script response error: {e}")
fallback_response = "Xin lỗi, em gặp lỗi kỹ thuật. Vui lòng thử lại sau."
ai_message = AIMessage(content=fallback_response)
return {
**state,
"messages": [ai_message],
"response_type": "error",
"error": str(e),
}
def generate_response_node(state: ViettelPayState, llm_client) -> ViettelPayState:
"""Node for LLM-based response generation with conversation context"""
from langchain_core.messages import AIMessage
# Get the latest user message and conversation history
messages = state["messages"]
if not messages:
ai_message = AIMessage(content="Xin lỗi, em không thể xử lý yêu cầu này.")
return {**state, "messages": [ai_message], "response_type": "error"}
# Find the last human/user message
user_message = None
for msg in reversed(messages):
if hasattr(msg, "type") and msg.type == "human":
user_message = msg.content
break
elif hasattr(msg, "role") and msg.role == "user":
user_message = msg.content
break
if not user_message:
ai_message = AIMessage(content="Xin lỗi, em không thể xử lý yêu cầu này.")
return {**state, "messages": [ai_message], "response_type": "error"}
intent = state.get("intent", "")
retrieved_docs = state.get("retrieved_docs", [])
enhanced_query = state.get("enhanced_query", "")
try:
# Build context from retrieved documents using original content
context = ""
if retrieved_docs:
context = "\n\n".join(
[
f"[{doc.metadata.get('doc_type', 'unknown')}] {doc.metadata.get('original_content', doc.page_content)}"
for doc in retrieved_docs
]
)
# Use saved conversation context if available, otherwise get it
conversation_context = state.get("conversation_context")
if conversation_context is None:
conversation_context = get_conversation_context(messages, max_messages=6)
# Get system prompt based on intent using the prompts file
system_prompt = get_system_prompt_by_intent(intent)
# Build full prompt with both knowledge context and conversation context using the prompts file
generation_prompt = RESPONSE_GENERATION_PROMPT.format(
system_prompt=system_prompt,
context=context,
conversation_context=conversation_context,
user_message=user_message,
enhanced_query=enhanced_query,
)
# Generate response using the pre-initialized LLM client
response_text = llm_client.generate(generation_prompt, temperature=0.1)
print(f"🤖 Generated response for intent: {intent}")
# Add AI message to the conversation
ai_message = AIMessage(content=response_text)
return {**state, "messages": [ai_message], "response_type": "generated"}
except Exception as e:
print(f"❌ Response generation error: {e}")
error_response = "Xin lỗi, em gặp lỗi khi xử lý yêu cầu. Vui lòng thử lại sau."
ai_message = AIMessage(content=error_response)
return {
**state,
"messages": [ai_message],
"response_type": "error",
"error": str(e),
}
# Routing function for conditional edges
def route_after_intent_classification(state: ViettelPayState) -> str:
"""Route to appropriate node after intent classification"""
intent = state.get("intent", "unclear")
# Script-based intents (no knowledge retrieval needed)
script_intents = {"greeting", "out_of_scope", "human_request", "unclear"}
if intent in script_intents:
return "script_response"
else:
# Knowledge-based intents need query enhancement first
return "query_enhancement"
def route_after_query_enhancement(state: ViettelPayState) -> str:
"""Route after query enhancement (always to knowledge retrieval)"""
return "knowledge_retrieval"
def route_after_knowledge_retrieval(state: ViettelPayState) -> str:
"""Route after knowledge retrieval (always to generation)"""
return "generate_response"