Spaces:
Sleeping
Sleeping
Commit
ยท
e535275
1
Parent(s):
73fd40e
Update app.py
Browse files
app.py
CHANGED
|
@@ -20,14 +20,7 @@ def greet(co):
|
|
| 20 |
if not code:
|
| 21 |
break
|
| 22 |
code_text.append(code)
|
| 23 |
-
|
| 24 |
-
iter_num = int(
|
| 25 |
-
input('false alarm์ ๋ถ๋ฅํ๊ธฐ ์ํด์ ์
๋ ฅํ ์ฝ๋์ ๊ฐฏ์๋ ๋ช๊ฐ์ธ๊ฐ์? (์ซ์๋ง ์
๋ ฅํ์ธ์.) : '))
|
| 26 |
-
code_text = []
|
| 27 |
-
for _ in range(iter_num):
|
| 28 |
-
code = input('์ฝ๋๋ฅผ ์
๋ ฅํ์ธ์ : ')
|
| 29 |
-
code_text.append(code)
|
| 30 |
-
'''
|
| 31 |
code_text = ' '.join(code_text)
|
| 32 |
code_text = re.sub('\/\*[\S\s]*\*\/', '', code_text)
|
| 33 |
code_text = re.sub('\/\/.*', '', code_text)
|
|
@@ -53,6 +46,7 @@ def greet(co):
|
|
| 53 |
input_ids = torch.tensor([input_ids])
|
| 54 |
model = AutoModelForSequenceClassification.from_pretrained(
|
| 55 |
path, num_labels=2)
|
|
|
|
| 56 |
pred_2 = model(input_ids)[0].detach().cpu().numpy()[0]
|
| 57 |
|
| 58 |
# 3. CFA-codebert-c-v2.pt -> undersampling + codebert-c finetuning model
|
|
@@ -63,6 +57,7 @@ def greet(co):
|
|
| 63 |
input_ids = torch.tensor([input_ids])
|
| 64 |
model = RobertaForSequenceClassification.from_pretrained(
|
| 65 |
path, num_labels=2)
|
|
|
|
| 66 |
pred_3 = model(input_ids)[0].detach().cpu().numpy()
|
| 67 |
|
| 68 |
# 4. codeT5 finetuning model
|
|
@@ -217,12 +212,12 @@ with gr.Blocks() as demo1:
|
|
| 217 |
"""
|
| 218 |
)
|
| 219 |
with gr.Row():
|
| 220 |
-
with gr.
|
| 221 |
inputs_1 = gr.Textbox(placeholder="์ฝ๋๋ฅผ ์
๋ ฅํ์์ค.", label='Text')
|
| 222 |
with gr.Row():
|
| 223 |
btn = gr.Button("์ ์ถํ๊ธฐ")
|
| 224 |
with gr.Column():
|
| 225 |
-
outputs_1 = gr.
|
| 226 |
btn.click(fn = greet, inputs = inputs_1, outputs= outputs_1)
|
| 227 |
|
| 228 |
if __name__ == "__main__":
|
|
|
|
| 20 |
if not code:
|
| 21 |
break
|
| 22 |
code_text.append(code)
|
| 23 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
code_text = ' '.join(code_text)
|
| 25 |
code_text = re.sub('\/\*[\S\s]*\*\/', '', code_text)
|
| 26 |
code_text = re.sub('\/\/.*', '', code_text)
|
|
|
|
| 46 |
input_ids = torch.tensor([input_ids])
|
| 47 |
model = AutoModelForSequenceClassification.from_pretrained(
|
| 48 |
path, num_labels=2)
|
| 49 |
+
model.to('cpu')
|
| 50 |
pred_2 = model(input_ids)[0].detach().cpu().numpy()[0]
|
| 51 |
|
| 52 |
# 3. CFA-codebert-c-v2.pt -> undersampling + codebert-c finetuning model
|
|
|
|
| 57 |
input_ids = torch.tensor([input_ids])
|
| 58 |
model = RobertaForSequenceClassification.from_pretrained(
|
| 59 |
path, num_labels=2)
|
| 60 |
+
model.to('cpu')
|
| 61 |
pred_3 = model(input_ids)[0].detach().cpu().numpy()
|
| 62 |
|
| 63 |
# 4. codeT5 finetuning model
|
|
|
|
| 212 |
"""
|
| 213 |
)
|
| 214 |
with gr.Row():
|
| 215 |
+
with gr.Columns():
|
| 216 |
inputs_1 = gr.Textbox(placeholder="์ฝ๋๋ฅผ ์
๋ ฅํ์์ค.", label='Text')
|
| 217 |
with gr.Row():
|
| 218 |
btn = gr.Button("์ ์ถํ๊ธฐ")
|
| 219 |
with gr.Column():
|
| 220 |
+
outputs_1 = gr.Number(label = 'Result')
|
| 221 |
btn.click(fn = greet, inputs = inputs_1, outputs= outputs_1)
|
| 222 |
|
| 223 |
if __name__ == "__main__":
|