import traceback import soundfile as sf import torch import numpy as np from transformers import AutoProcessor, AutoModelForSpeechSeq2Seq import gradio as gr import resampy # Language code mapping LANGUAGE_CODES = { "Amharic": "amh", "Swahili": "swh", "Somali": "som", "Afan Oromo": "orm", "Tigrinya": "tir", "Chichewa": "nya" } # --- Load ASR model --- try: model_id = "facebook/seamless-m4t-v2-large" processor = AutoProcessor.from_pretrained(model_id) asr_model = AutoModelForSpeechSeq2Seq.from_pretrained(model_id).to("cpu") print("[INFO] ASR model loaded successfully.") except Exception as e: print("[ERROR] Failed to load ASR model:", e) traceback.print_exc() asr_model = None processor = None # --- Helper: ASR --- def transcribe_audio(audio_file, language): if asr_model is None or processor is None: return "ASR Model loading failed" try: # Get language code lang_code = LANGUAGE_CODES.get(language) if not lang_code: return f"Unsupported language: {language}" # Read and preprocess audio audio, sr = sf.read(audio_file) if audio.ndim > 1: audio = audio.mean(axis=1) audio = resampy.resample(audio, sr, 16000) # Process with model inputs = processor(audios=audio, sampling_rate=16000, return_tensors="pt") with torch.no_grad(): generated_ids = asr_model.generate(**inputs, tgt_lang=lang_code) # Decode the transcription transcription = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] return transcription.strip() except Exception as e: print(f"[ERROR] ASR transcription failed for {language}:", e) traceback.print_exc() return f"ASR failed: {str(e)[:50]}..." # --- Gradio UI --- with gr.Blocks(title="🌍 Multilingual ASR") as demo: gr.Markdown("# 🌍 Multilingual Speech Recognition") gr.Markdown("Transcribe audio in Amharic, Swahili, Somali, Afan Oromo, Tigrinya, or Chichewa") with gr.Row(): with gr.Column(): audio_input = gr.Audio(sources=["microphone", "upload"], type="filepath", label="Record or upload audio") language_select = gr.Dropdown( choices=list(LANGUAGE_CODES.keys()), value="Swahili", label="Select Language" ) submit_btn = gr.Button("Transcribe", variant="primary") with gr.Row(): with gr.Column(): transcription_output = gr.Textbox(label="Transcription") submit_btn.click( fn=transcribe_audio, inputs=[audio_input, language_select], outputs=transcription_output ) if __name__ == "__main__": demo.launch(server_name="0.0.0.0", server_port=7860)