Spaces:
Runtime error
Runtime error
Upload 2 files
Browse files
app.py
CHANGED
|
@@ -2,7 +2,7 @@ import gradio as gr
|
|
| 2 |
import models
|
| 3 |
|
| 4 |
with gr.Blocks() as demo:
|
| 5 |
-
Models: list[models.BaseTCOModel] = [models.OpenAIModel, models.
|
| 6 |
model_names = [Model().get_name() for Model in Models]
|
| 7 |
with gr.Row():
|
| 8 |
with gr.Column():
|
|
@@ -20,6 +20,6 @@ with gr.Blocks() as demo:
|
|
| 20 |
|
| 21 |
compute_tco_btn = gr.Button("Compute TCO")
|
| 22 |
tco_output = gr.Text("Output: ")
|
| 23 |
-
compute_tco_btn.click(page1.compute_cost_per_token, inputs=page1.
|
| 24 |
|
| 25 |
demo.launch(debug=True)
|
|
|
|
| 2 |
import models
|
| 3 |
|
| 4 |
with gr.Blocks() as demo:
|
| 5 |
+
Models: list[models.BaseTCOModel] = [models.OpenAIModel, models.OpenSourceLlama2Model]
|
| 6 |
model_names = [Model().get_name() for Model in Models]
|
| 7 |
with gr.Row():
|
| 8 |
with gr.Column():
|
|
|
|
| 20 |
|
| 21 |
compute_tco_btn = gr.Button("Compute TCO")
|
| 22 |
tco_output = gr.Text("Output: ")
|
| 23 |
+
compute_tco_btn.click(page1.compute_cost_per_token, inputs=page1.get_all_components_for_cost_computing() + [dropdown], outputs=tco_output)
|
| 24 |
|
| 25 |
demo.launch(debug=True)
|
models.py
CHANGED
|
@@ -1,7 +1,7 @@
|
|
| 1 |
from gradio.components import Component
|
| 2 |
import gradio as gr
|
| 3 |
-
import uuid
|
| 4 |
from abc import ABC, abstractclassmethod
|
|
|
|
| 5 |
|
| 6 |
class BaseTCOModel(ABC):
|
| 7 |
# TO DO: Find way to specify which component should be used for computing cost
|
|
@@ -16,9 +16,16 @@ class BaseTCOModel(ABC):
|
|
| 16 |
def get_components(self) -> list[Component]:
|
| 17 |
return self._components
|
| 18 |
|
|
|
|
|
|
|
|
|
|
| 19 |
def get_name(self):
|
| 20 |
return self.name
|
| 21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
@abstractclassmethod
|
| 23 |
def compute_cost_per_token(self):
|
| 24 |
pass
|
|
@@ -29,7 +36,6 @@ class BaseTCOModel(ABC):
|
|
| 29 |
|
| 30 |
def set_name(self, name):
|
| 31 |
self.name = name
|
| 32 |
-
self.id = name + str(uuid.uuid4())
|
| 33 |
|
| 34 |
class OpenAIModel(BaseTCOModel):
|
| 35 |
|
|
@@ -75,14 +81,15 @@ class OpenAIModel(BaseTCOModel):
|
|
| 75 |
|
| 76 |
return cost_per_output_token
|
| 77 |
|
| 78 |
-
class
|
| 79 |
def __init__(self):
|
| 80 |
-
self.set_name("(Open source)
|
| 81 |
super().__init__()
|
| 82 |
|
| 83 |
def render(self):
|
| 84 |
vm_choices = ["1x Nvidia A100 (Azure NC24ads A100 v4)",
|
| 85 |
"2x Nvidia A100 (Azure NC48ads A100 v4)"]
|
|
|
|
| 86 |
def on_model_change(model):
|
| 87 |
if model == "Llama 2 7B":
|
| 88 |
return gr.Dropdown.update(choices=vm_choices)
|
|
@@ -103,7 +110,9 @@ class OpenSourceModel(BaseTCOModel):
|
|
| 103 |
visible=False,
|
| 104 |
label="Instance of VM with GPU"
|
| 105 |
)
|
| 106 |
-
self.
|
|
|
|
|
|
|
| 107 |
label="Number of tokens per second for this specific model and VM instance",
|
| 108 |
interactive=False
|
| 109 |
)
|
|
@@ -112,14 +121,14 @@ class OpenSourceModel(BaseTCOModel):
|
|
| 112 |
|
| 113 |
self.model.change(on_model_change, inputs=self.model, outputs=self.vm)
|
| 114 |
self.vm.change(on_vm_change, inputs=[self.model, self.vm], outputs=self.tokens_per_second)
|
| 115 |
-
self.maxed_out = gr.Slider(minimum=
|
| 116 |
info="How much the GPU is fully used.",
|
| 117 |
interactive=True,
|
| 118 |
visible=False)
|
| 119 |
|
| 120 |
-
def compute_cost_per_token(self, tokens_per_second, maxed_out):
|
| 121 |
-
|
| 122 |
-
return
|
| 123 |
|
| 124 |
class ModelPage:
|
| 125 |
def __init__(self, Models: BaseTCOModel):
|
|
@@ -130,13 +139,20 @@ class ModelPage:
|
|
| 130 |
|
| 131 |
def render(self):
|
| 132 |
for model in self.models:
|
| 133 |
-
model.render()
|
|
|
|
| 134 |
|
| 135 |
def get_all_components(self) -> list[Component]:
|
| 136 |
output = []
|
| 137 |
for model in self.models:
|
| 138 |
output += model.get_components()
|
| 139 |
return output
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 140 |
|
| 141 |
def make_model_visible(self, name:str):
|
| 142 |
# First decide which indexes
|
|
@@ -152,9 +168,10 @@ class ModelPage:
|
|
| 152 |
begin=0
|
| 153 |
current_model = args[-1]
|
| 154 |
for model in self.models:
|
| 155 |
-
model_n_args = len(model.
|
| 156 |
-
model_args = args[begin:begin+model_n_args]
|
| 157 |
if current_model == model.get_name():
|
|
|
|
|
|
|
| 158 |
model_tco = model.compute_cost_per_token(*model_args)
|
| 159 |
return f"Model {current_model} has TCO {model_tco}"
|
| 160 |
-
begin = begin+model_n_args
|
|
|
|
| 1 |
from gradio.components import Component
|
| 2 |
import gradio as gr
|
|
|
|
| 3 |
from abc import ABC, abstractclassmethod
|
| 4 |
+
import inspect
|
| 5 |
|
| 6 |
class BaseTCOModel(ABC):
|
| 7 |
# TO DO: Find way to specify which component should be used for computing cost
|
|
|
|
| 16 |
def get_components(self) -> list[Component]:
|
| 17 |
return self._components
|
| 18 |
|
| 19 |
+
def get_components_for_cost_computing(self):
|
| 20 |
+
return self.components_for_cost_computing
|
| 21 |
+
|
| 22 |
def get_name(self):
|
| 23 |
return self.name
|
| 24 |
|
| 25 |
+
def register_components_for_cost_computing(self):
|
| 26 |
+
args = inspect.getfullargspec(self.compute_cost_per_token)[0][1:]
|
| 27 |
+
self.components_for_cost_computing = [self.__getattribute__(arg) for arg in args]
|
| 28 |
+
|
| 29 |
@abstractclassmethod
|
| 30 |
def compute_cost_per_token(self):
|
| 31 |
pass
|
|
|
|
| 36 |
|
| 37 |
def set_name(self, name):
|
| 38 |
self.name = name
|
|
|
|
| 39 |
|
| 40 |
class OpenAIModel(BaseTCOModel):
|
| 41 |
|
|
|
|
| 81 |
|
| 82 |
return cost_per_output_token
|
| 83 |
|
| 84 |
+
class OpenSourceLlama2Model(BaseTCOModel):
|
| 85 |
def __init__(self):
|
| 86 |
+
self.set_name("(Open source) Llama 2")
|
| 87 |
super().__init__()
|
| 88 |
|
| 89 |
def render(self):
|
| 90 |
vm_choices = ["1x Nvidia A100 (Azure NC24ads A100 v4)",
|
| 91 |
"2x Nvidia A100 (Azure NC48ads A100 v4)"]
|
| 92 |
+
|
| 93 |
def on_model_change(model):
|
| 94 |
if model == "Llama 2 7B":
|
| 95 |
return gr.Dropdown.update(choices=vm_choices)
|
|
|
|
| 110 |
visible=False,
|
| 111 |
label="Instance of VM with GPU"
|
| 112 |
)
|
| 113 |
+
self.vm_cost_per_hour = gr.Number(3.5, label="VM instance cost per hour",
|
| 114 |
+
interactive=True, visible=False)
|
| 115 |
+
self.tokens_per_second = gr.Number(900, visible=False,
|
| 116 |
label="Number of tokens per second for this specific model and VM instance",
|
| 117 |
interactive=False
|
| 118 |
)
|
|
|
|
| 121 |
|
| 122 |
self.model.change(on_model_change, inputs=self.model, outputs=self.vm)
|
| 123 |
self.vm.change(on_vm_change, inputs=[self.model, self.vm], outputs=self.tokens_per_second)
|
| 124 |
+
self.maxed_out = gr.Slider(minimum=0.01, value=1., step=0.01, label="% maxed out",
|
| 125 |
info="How much the GPU is fully used.",
|
| 126 |
interactive=True,
|
| 127 |
visible=False)
|
| 128 |
|
| 129 |
+
def compute_cost_per_token(self, vm_cost_per_hour, tokens_per_second, maxed_out):
|
| 130 |
+
cost_per_token = vm_cost_per_hour / (tokens_per_second * 3600 * maxed_out)
|
| 131 |
+
return cost_per_token
|
| 132 |
|
| 133 |
class ModelPage:
|
| 134 |
def __init__(self, Models: BaseTCOModel):
|
|
|
|
| 139 |
|
| 140 |
def render(self):
|
| 141 |
for model in self.models:
|
| 142 |
+
model.render()
|
| 143 |
+
model.register_components_for_cost_computing()
|
| 144 |
|
| 145 |
def get_all_components(self) -> list[Component]:
|
| 146 |
output = []
|
| 147 |
for model in self.models:
|
| 148 |
output += model.get_components()
|
| 149 |
return output
|
| 150 |
+
|
| 151 |
+
def get_all_components_for_cost_computing(self) -> list[Component]:
|
| 152 |
+
output = []
|
| 153 |
+
for model in self.models:
|
| 154 |
+
output += model.get_components_for_cost_computing()
|
| 155 |
+
return output
|
| 156 |
|
| 157 |
def make_model_visible(self, name:str):
|
| 158 |
# First decide which indexes
|
|
|
|
| 168 |
begin=0
|
| 169 |
current_model = args[-1]
|
| 170 |
for model in self.models:
|
| 171 |
+
model_n_args = len(model.get_components_for_cost_computing())
|
|
|
|
| 172 |
if current_model == model.get_name():
|
| 173 |
+
model_args = args[begin:begin+model_n_args]
|
| 174 |
+
print("Model args: ",model_args)
|
| 175 |
model_tco = model.compute_cost_per_token(*model_args)
|
| 176 |
return f"Model {current_model} has TCO {model_tco}"
|
| 177 |
+
begin = begin+model_n_args
|