Spaces:
Runtime error
Runtime error
app push
Browse files
app.py
CHANGED
|
@@ -0,0 +1,157 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import time
|
| 2 |
+
import torch
|
| 3 |
+
import lightning as L
|
| 4 |
+
from torch.utils.data import DataLoader
|
| 5 |
+
from lightning.fabric.loggers import CSVLogger
|
| 6 |
+
from lightning.fabric.strategies import FSDPStrategy
|
| 7 |
+
from tsai_gpt.model import GPT, Block, Config
|
| 8 |
+
from tsai_gpt.tokenizer import Tokenizer
|
| 9 |
+
from tsai_gpt.packed_dataset import CombinedDataset, PackedDataset
|
| 10 |
+
from tsai_gpt.speed_monitor import SpeedMonitorBase, estimate_flops, measure_flops
|
| 11 |
+
from tsai_gpt.speed_monitor import SpeedMonitorFabric as SpeedMonitor
|
| 12 |
+
from tsai_gpt.utils import chunked_cross_entropy, get_default_supported_precision, num_parameters, load_checkpoint, gptq_quantization
|
| 13 |
+
import torch.nn as nn
|
| 14 |
+
from pathlib import Path
|
| 15 |
+
import sys
|
| 16 |
+
import random
|
| 17 |
+
from torch import nn
|
| 18 |
+
import lightning.pytorch as pl
|
| 19 |
+
from torch.nn import functional as F
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
model_name = "pythia-160m"
|
| 24 |
+
name = "redpajama"
|
| 25 |
+
|
| 26 |
+
def _init_weights(module: nn.Module) -> None:
|
| 27 |
+
"""Meant to be used with `gpt.apply(gpt._init_weights)`."""
|
| 28 |
+
if isinstance(module, nn.Linear):
|
| 29 |
+
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
|
| 30 |
+
if module.bias is not None:
|
| 31 |
+
torch.nn.init.zeros_(module.bias)
|
| 32 |
+
elif isinstance(module, nn.Embedding):
|
| 33 |
+
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
|
| 34 |
+
|
| 35 |
+
config = Config.from_name(model_name)
|
| 36 |
+
model = GPT(config)
|
| 37 |
+
|
| 38 |
+
next(model.parameters()).sum() #-25 -2 -860
|
| 39 |
+
|
| 40 |
+
model.apply(_init_weights)
|
| 41 |
+
model.load_state_dict
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
checkpoint_dir = Path("out/redpajama/intermediate-ckpt-3_9.pth")
|
| 45 |
+
strategy = "auto"
|
| 46 |
+
devices = 1
|
| 47 |
+
precision = None
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
precision = get_default_supported_precision(training=False)
|
| 51 |
+
plugins = None
|
| 52 |
+
fabric = L.Fabric(devices=devices, precision=precision, strategy=strategy, plugins=plugins)
|
| 53 |
+
fabric.launch()
|
| 54 |
+
fabric.print(f"Loading model {str(checkpoint_dir)!r} with {config.__dict__}", file=sys.stderr)
|
| 55 |
+
|
| 56 |
+
with fabric.init_module(empty_init=True), gptq_quantization(quantize=="gptq.int4"):
|
| 57 |
+
model = GPT(config)
|
| 58 |
+
|
| 59 |
+
model.eval()
|
| 60 |
+
model = fabric.setup_module(model)
|
| 61 |
+
load_checkpoint(fabric, model, checkpoint_dir)
|
| 62 |
+
|
| 63 |
+
tokenizer = Tokenizer(Path('tokenizer_config'))
|
| 64 |
+
encoded = tokenizer.encode(prompt, device=fabric.device)
|
| 65 |
+
prompt_length = encoded.size(0)
|
| 66 |
+
max_returned_tokens = prompt_length + max_new_tokens
|
| 67 |
+
|
| 68 |
+
with fabric.init_tensor():
|
| 69 |
+
# set the max_seq_length to limit the memory usage to what we need
|
| 70 |
+
model.max_seq_length = max_returned_tokens
|
| 71 |
+
|
| 72 |
+
@torch.inference_mode()
|
| 73 |
+
def generate(
|
| 74 |
+
model: GPT,
|
| 75 |
+
idx: torch.Tensor,
|
| 76 |
+
max_returned_tokens: int,
|
| 77 |
+
*,
|
| 78 |
+
temperature: float = 1.0,
|
| 79 |
+
top_k:int = None,
|
| 80 |
+
eos_id:int = None,
|
| 81 |
+
) -> torch.Tensor:
|
| 82 |
+
"""Takes a conditioning sequence (prompt) as input and continues to generate as many tokens as requested.
|
| 83 |
+
|
| 84 |
+
The implementation of this function is modified from A. Karpathy's nanoGPT.
|
| 85 |
+
|
| 86 |
+
Args:
|
| 87 |
+
model: The model to use.
|
| 88 |
+
idx: Tensor of shape (T) with indices of the prompt sequence.
|
| 89 |
+
max_returned_tokens: The maximum number of tokens to return (given plus generated).
|
| 90 |
+
temperature: Scales the predicted logits by 1 / temperature.
|
| 91 |
+
top_k: If specified, only sample among the tokens with the k highest probabilities.
|
| 92 |
+
eos_id: If specified, stop generating any more token once the <eos> token is triggered.
|
| 93 |
+
"""
|
| 94 |
+
T = idx.size(0)
|
| 95 |
+
assert max_returned_tokens > T
|
| 96 |
+
if model.max_seq_length < max_returned_tokens - 1:
|
| 97 |
+
# rolling the kv cache based on the `input_pos` value would be necessary. However, doing so would introduce a
|
| 98 |
+
# data dependency on the `input_pos` tensor and impact model compilation. Since this setting is uncommon, we do
|
| 99 |
+
# not support it to avoid negatively impacting the overall speed
|
| 100 |
+
raise NotImplementedError(f"max_seq_length {model.max_seq_length} needs to be >= {max_returned_tokens - 1}")
|
| 101 |
+
|
| 102 |
+
device, dtype = idx.device, idx.dtype
|
| 103 |
+
# create an empty tensor of the expected final shape and fill in the current tokens
|
| 104 |
+
empty = torch.empty(max_returned_tokens, dtype=dtype, device=device)
|
| 105 |
+
empty[:T] = idx
|
| 106 |
+
idx = empty
|
| 107 |
+
input_pos = torch.arange(0, T, device=device)
|
| 108 |
+
|
| 109 |
+
# generate up to a fixed number of tokens
|
| 110 |
+
for _ in range(max_returned_tokens - T):
|
| 111 |
+
x = idx.index_select(0, input_pos).view(1, -1)
|
| 112 |
+
|
| 113 |
+
# forward
|
| 114 |
+
logits = model(x, input_pos)
|
| 115 |
+
logits = logits[0, -1] / temperature
|
| 116 |
+
|
| 117 |
+
# optionally crop the logits to only the top k options
|
| 118 |
+
if top_k is not None:
|
| 119 |
+
v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
|
| 120 |
+
logits = torch.where(logits < v[[-1]], -float("Inf"), logits)
|
| 121 |
+
|
| 122 |
+
probs = torch.nn.functional.softmax(logits, dim=-1)
|
| 123 |
+
idx_next = torch.multinomial(probs, num_samples=1).to(dtype=dtype)
|
| 124 |
+
|
| 125 |
+
# advance
|
| 126 |
+
input_pos = input_pos[-1:] + 1
|
| 127 |
+
|
| 128 |
+
# concatenate the new generation
|
| 129 |
+
idx = idx.index_copy(0, input_pos, idx_next)
|
| 130 |
+
|
| 131 |
+
# if <eos> token is triggered, return the output (stop generation)
|
| 132 |
+
if idx_next == eos_id:
|
| 133 |
+
return idx[:input_pos] # include the EOS token
|
| 134 |
+
|
| 135 |
+
return idx
|
| 136 |
+
|
| 137 |
+
|
| 138 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 139 |
+
|
| 140 |
+
def generate_dialogue(input_text, temperature=0.8, max_tokens=200, top_k=1):
|
| 141 |
+
encoded = tokenizer.encode(input_text, device=fabric.device)
|
| 142 |
+
max_returned_tokens = encoded.size(0) + max_tokens
|
| 143 |
+
|
| 144 |
+
|
| 145 |
+
with fabric.init_tensor():
|
| 146 |
+
# set the max_seq_length to limit the memory usage to what we need
|
| 147 |
+
model.max_seq_length = max_returned_tokens
|
| 148 |
+
|
| 149 |
+
|
| 150 |
+
with fabric.init_tensor():
|
| 151 |
+
model.set_kv_cache(batch_size=1)
|
| 152 |
+
|
| 153 |
+
y = generate(model, encoded, max_returned_tokens, temperature=temperature, top_k=top_k)
|
| 154 |
+
|
| 155 |
+
return(tokenizer.decode(y))
|
| 156 |
+
|
| 157 |
+
|