Spaces:
Running
Running
| import gradio as gr | |
| import subprocess | |
| from huggingface_hub import create_repo, HfApi | |
| from huggingface_hub import snapshot_download | |
| api = HfApi() | |
| def process_model(model_id, q_method, username, hf_token): | |
| MODEL_NAME = model_id.split('/')[-1] | |
| fp16 = f"{MODEL_NAME}/{MODEL_NAME.lower()}.fp16.bin" | |
| snapshot_download(repo_id=model_id, local_dir = f"{MODEL_NAME}", local_dir_use_symlinks=False) | |
| print("Model downloaded successully!") | |
| fp16_conversion = f"python llama.cpp/convert.py {MODEL_NAME} --outtype f16 --outfile {fp16}" | |
| subprocess.run(fp16_conversion, shell=True) | |
| print("Model converted to fp16 successully!") | |
| qtype = f"{MODEL_NAME}/{MODEL_NAME.lower()}.{q_method.upper()}.gguf" | |
| quantise_ggml = f"./llama.cpp/quantize {fp16} {qtype} {q_method}" | |
| subprocess.run(quantise_ggml, shell=True) | |
| print("Quantised successfully!") | |
| # Create empty repo | |
| create_repo( | |
| repo_id = f"{username}/{MODEL_NAME}-{q_method}-GGUF", | |
| repo_type="model", | |
| exist_ok=True, | |
| token=hf_token | |
| ) | |
| print("Empty repo created successfully!") | |
| # Upload gguf files | |
| api.upload_folder( | |
| folder_path=MODEL_NAME, | |
| repo_id=f"{username}/{MODEL_NAME}-{q_method}-GGUF", | |
| allow_patterns=["*.gguf","$.md"], | |
| token=hf_token | |
| ) | |
| print("Uploaded successfully!") | |
| return "Processing complete." | |
| # Create Gradio interface | |
| iface = gr.Interface( | |
| fn=process_model, | |
| inputs=[ | |
| gr.Textbox(lines=1, label="Model ID"), | |
| gr.Textbox(lines=1, label="Quantization Methods"), | |
| gr.Textbox(lines=1, label="Username"), | |
| gr.Textbox(lines=1, label="Token") | |
| ], | |
| outputs="text" | |
| ) | |
| # Launch the interface | |
| iface.launch(debug=True) |