Spaces:
Running
Running
| import os | |
| import shutil | |
| import subprocess | |
| import signal | |
| os.environ["GRADIO_ANALYTICS_ENABLED"] = "False" | |
| import gradio as gr | |
| from huggingface_hub import create_repo, HfApi | |
| from huggingface_hub import snapshot_download | |
| from huggingface_hub import whoami | |
| from huggingface_hub import ModelCard | |
| from huggingface_hub import login | |
| from huggingface_hub import scan_cache_dir | |
| from gradio_huggingfacehub_search import HuggingfaceHubSearch | |
| from apscheduler.schedulers.background import BackgroundScheduler | |
| from textwrap import dedent | |
| from mlx_lm import convert | |
| HF_TOKEN = os.environ.get("HF_TOKEN") | |
| def clear_cache(): | |
| scan = scan_cache_dir() | |
| to_delete = [] | |
| for repo in scan.repos: | |
| if repo.repo_type == "model": | |
| to_delete.append([rev.commit_hash for rev in repo.revisions]) | |
| scan.delete_revisions(*to_delete) | |
| print("Cache has been cleared") | |
| def process_model(model_id, q_method,oauth_token: gr.OAuthToken | None): | |
| if oauth_token.token is None: | |
| raise ValueError("You must be logged in to use MLX-my-repo") | |
| model_name = model_id.split('/')[-1] | |
| username = whoami(oauth_token.token)["name"] | |
| login(token=oauth_token.token, add_to_git_credential=True) | |
| try: | |
| upload_repo = username + "/" + model_name + "-mlx" | |
| convert(model_id, quantize=True, upload_repo=upload_repo) | |
| clear_cache() | |
| return ( | |
| f'Find your repo <a href=\'{new_repo_url}\' target="_blank" style="text-decoration:underline">here</a>', | |
| "llama.png", | |
| ) | |
| except Exception as e: | |
| return (f"Error: {e}", "error.png") | |
| finally: | |
| shutil.rmtree("mlx_model", ignore_errors=True) | |
| clear_cache() | |
| print("Folder cleaned up successfully!") | |
| css="""/* Custom CSS to allow scrolling */ | |
| .gradio-container {overflow-y: auto;} | |
| """ | |
| # Create Gradio interface | |
| with gr.Blocks(css=css) as demo: | |
| gr.Markdown("You must be logged in to use MLX-my-repo.") | |
| gr.LoginButton(min_width=250) | |
| model_id = HuggingfaceHubSearch( | |
| label="Hub Model ID", | |
| placeholder="Search for model id on Huggingface", | |
| search_type="model", | |
| ) | |
| q_method = gr.Dropdown( | |
| ["Q4", "Q8"], | |
| label="Quantization Method", | |
| info="MLX quantization type", | |
| value="Q4", | |
| filterable=False, | |
| visible=True | |
| ) | |
| iface = gr.Interface( | |
| fn=process_model, | |
| inputs=[ | |
| model_id, | |
| q_method, | |
| ], | |
| outputs=[ | |
| gr.Markdown(label="output"), | |
| gr.Image(show_label=False), | |
| ], | |
| title="Create your own MLX Quants, blazingly fast ⚡!", | |
| description="The space takes an HF repo as an input, quantizes it and creates a Public/ Private repo containing the selected quant under your HF user namespace.", | |
| api_name=False | |
| ) | |
| def restart_space(): | |
| HfApi().restart_space(repo_id="reach-vb/mlx-my-repo", token=HF_TOKEN, factory_reboot=True) | |
| scheduler = BackgroundScheduler() | |
| scheduler.add_job(restart_space, "interval", seconds=21600) | |
| scheduler.start() | |
| # Launch the interface | |
| demo.queue(default_concurrency_limit=1, max_size=5).launch(debug=True, show_api=False) |