Spaces:
Running
Running
| import os | |
| import shutil | |
| import subprocess | |
| import signal | |
| os.environ["GRADIO_ANALYTICS_ENABLED"] = "False" | |
| import gradio as gr | |
| from huggingface_hub import create_repo, HfApi | |
| from huggingface_hub import snapshot_download | |
| from huggingface_hub import whoami | |
| from huggingface_hub import ModelCard | |
| from gradio_huggingfacehub_search import HuggingfaceHubSearch | |
| from apscheduler.schedulers.background import BackgroundScheduler | |
| from textwrap import dedent | |
| HF_TOKEN = os.environ.get("HF_TOKEN") | |
| def process_model(model_id, q_method, private_repo, oauth_token: gr.OAuthToken | None): | |
| if oauth_token.token is None: | |
| raise ValueError("You must be logged in to use GGUF-my-repo") | |
| model_name = model_id.split('/')[-1] | |
| fp16 = f"{model_name}.fp16.gguf" | |
| try: | |
| api = HfApi(token=oauth_token.token) | |
| dl_pattern = ["*.md", "*.json", "*.model"] | |
| pattern = ( | |
| "*.safetensors" | |
| if any( | |
| file.path.endswith(".safetensors") | |
| for file in api.list_repo_tree( | |
| repo_id=model_id, | |
| recursive=True, | |
| ) | |
| ) | |
| else "*.bin" | |
| ) | |
| dl_pattern += pattern | |
| api.snapshot_download(repo_id=model_id, local_dir=model_name, local_dir_use_symlinks=False, allow_patterns=dl_pattern) | |
| print("Model downloaded successfully!") | |
| print(f"Current working directory: {os.getcwd()}") | |
| print(f"Model directory contents: {os.listdir(model_name)}") | |
| conversion_script = "convert_hf_to_gguf.py" | |
| fp16_conversion = f"python llama.cpp/{conversion_script} {model_name} --outtype f16 --outfile {fp16}" | |
| result = subprocess.run(fp16_conversion, shell=True, capture_output=True) | |
| print(result) | |
| if result.returncode != 0: | |
| raise Exception(f"Error converting to fp16: {result.stderr}") | |
| print("Model converted to fp16 successfully!") | |
| print(f"Converted model path: {fp16}") | |
| username = whoami(oauth_token.token)["name"] | |
| quantized_gguf_name = f"{model_name.lower()}-{imatrix_q_method.lower()}-imat.gguf" if use_imatrix else f"{model_name.lower()}-{q_method.lower()}.gguf" | |
| quantized_gguf_path = quantized_gguf_name | |
| quantise_ggml = f"./llama.cpp/llama-quantize {fp16} {quantized_gguf_path} {q_method}" | |
| result = subprocess.run(quantise_ggml, shell=True, capture_output=True) | |
| if result.returncode != 0: | |
| raise Exception(f"Error quantizing: {result.stderr}") | |
| print(f"Quantized successfully with {imatrix_q_method if use_imatrix else q_method} option!") | |
| print(f"Quantized model path: {quantized_gguf_path}") | |
| # Create empty repo | |
| new_repo_url = api.create_repo(repo_id=f"{username}/{model_name}-{imatrix_q_method if use_imatrix else q_method}-GGUF", exist_ok=True, private=private_repo) | |
| new_repo_id = new_repo_url.repo_id | |
| print("Repo created successfully!", new_repo_url) | |
| try: | |
| card = ModelCard.load(model_id, token=oauth_token.token) | |
| except: | |
| card = ModelCard("") | |
| if card.data.tags is None: | |
| card.data.tags = [] | |
| card.data.tags.append("llama-cpp") | |
| card.data.tags.append("gguf-my-repo") | |
| card.data.base_model = model_id | |
| card.text = dedent( | |
| f""" | |
| # {new_repo_id} | |
| """ | |
| ) | |
| card.save(f"README.md") | |
| try: | |
| print(f"Uploading quantized model: {quantized_gguf_path}") | |
| api.upload_file( | |
| path_or_fileobj=quantized_gguf_path, | |
| path_in_repo=quantized_gguf_name, | |
| repo_id=new_repo_id, | |
| ) | |
| except Exception as e: | |
| raise Exception(f"Error uploading quantized model: {e}") | |
| api.upload_file( | |
| path_or_fileobj=f"README.md", | |
| path_in_repo=f"README.md", | |
| repo_id=new_repo_id, | |
| ) | |
| print(f"Uploaded successfully with {imatrix_q_method if use_imatrix else q_method} option!") | |
| return ( | |
| f'Find your repo <a href=\'{new_repo_url}\' target="_blank" style="text-decoration:underline">here</a>', | |
| "llama.png", | |
| ) | |
| except Exception as e: | |
| return (f"Error: {e}", "error.png") | |
| finally: | |
| shutil.rmtree(model_name, ignore_errors=True) | |
| print("Folder cleaned up successfully!") | |
| css="""/* Custom CSS to allow scrolling */ | |
| .gradio-container {overflow-y: auto;} | |
| """ | |
| # Create Gradio interface | |
| with gr.Blocks(css=css) as demo: | |
| gr.Markdown("You must be logged in to use MLX-my-repo.") | |
| gr.LoginButton(min_width=250) | |
| model_id = HuggingfaceHubSearch( | |
| label="Hub Model ID", | |
| placeholder="Search for model id on Huggingface", | |
| search_type="model", | |
| ) | |
| q_method = gr.Dropdown( | |
| ["Q4", "Q8"], | |
| label="Quantization Method", | |
| info="MLX quantization type", | |
| value="Q4", | |
| filterable=False, | |
| visible=True | |
| ) | |
| private_repo = gr.Checkbox( | |
| value=False, | |
| label="Private Repo", | |
| info="Create a private repo under your username." | |
| ) | |
| iface = gr.Interface( | |
| fn=process_model, | |
| inputs=[ | |
| model_id, | |
| q_method, | |
| private_repo, | |
| ], | |
| outputs=[ | |
| gr.Markdown(label="output"), | |
| gr.Image(show_label=False), | |
| ], | |
| title="Create your own MLX Quants, blazingly fast ⚡!", | |
| description="The space takes an HF repo as an input, quantizes it and creates a Public/ Private repo containing the selected quant under your HF user namespace.", | |
| api_name=False | |
| ) | |
| def restart_space(): | |
| HfApi().restart_space(repo_id="reach-vb/mlx-my-repo", token=HF_TOKEN, factory_reboot=True) | |
| scheduler = BackgroundScheduler() | |
| scheduler.add_job(restart_space, "interval", seconds=21600) | |
| scheduler.start() | |
| # Launch the interface | |
| demo.queue(default_concurrency_limit=1, max_size=5).launch(debug=True, show_api=False) |