Spaces:
Build error
Build error
| import os | |
| import cv2 | |
| import tqdm | |
| import shutil | |
| import tempfile | |
| import logging | |
| import supervision as sv | |
| import torch | |
| import spaces | |
| import gradio as gr | |
| import numpy as np | |
| from pathlib import Path | |
| from functools import lru_cache | |
| from typing import List, Optional, Tuple | |
| from PIL import Image | |
| from transformers import AutoModelForObjectDetection, AutoImageProcessor | |
| from transformers.image_utils import load_image | |
| # Configuration constants | |
| CHECKPOINTS = [ | |
| "ustc-community/dfine_m_obj2coco", | |
| "ustc-community/dfine_m_obj365", | |
| "ustc-community/dfine_n_coco", | |
| "ustc-community/dfine_s_coco", | |
| "ustc-community/dfine_m_coco", | |
| "ustc-community/dfine_l_coco", | |
| "ustc-community/dfine_x_coco", | |
| "ustc-community/dfine_s_obj365", | |
| "ustc-community/dfine_l_obj365", | |
| "ustc-community/dfine_x_obj365", | |
| "ustc-community/dfine_s_obj2coco", | |
| "ustc-community/dfine_l_obj2coco_e25", | |
| "ustc-community/dfine_x_obj2coco", | |
| ] | |
| DEFAULT_CHECKPOINT = CHECKPOINTS[0] | |
| DEFAULT_CONFIDENCE_THRESHOLD = 0.3 | |
| TORCH_DTYPE = torch.float32 | |
| # Image | |
| IMAGE_EXAMPLES = [ | |
| {"path": "./examples/images/crossroad.jpg", "use_url": False, "url": "", "label": "Local Image"}, | |
| { | |
| "path": None, | |
| "use_url": True, | |
| "url": "https://live.staticflickr.com/65535/33021460783_1646d43c54_b.jpg", | |
| "label": "Flickr Image", | |
| }, | |
| ] | |
| # Video | |
| MAX_NUM_FRAMES = 500 | |
| BATCH_SIZE = 4 | |
| ALLOWED_VIDEO_EXTENSIONS = {".mp4", ".avi", ".mov"} | |
| VIDEO_OUTPUT_DIR = Path("static/videos") | |
| VIDEO_OUTPUT_DIR.mkdir(parents=True, exist_ok=True) | |
| VIDEO_EXAMPLES = [ | |
| {"path": "./examples/videos/traffic.mp4", "label": "Local Video"}, | |
| {"path": "./examples/videos/fast_and_furious.mp4", "label": "Local Video"}, | |
| {"path": "./examples/videos/break_dance.mp4", "label": "Local Video"}, | |
| ] | |
| logging.basicConfig( | |
| level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s" | |
| ) | |
| logger = logging.getLogger(__name__) | |
| def detect_objects( | |
| checkpoint: str, | |
| images: List[np.ndarray], | |
| confidence_threshold: float = DEFAULT_CONFIDENCE_THRESHOLD, | |
| target_size: Optional[Tuple[int, int]] = None, | |
| batch_size: int = BATCH_SIZE, | |
| ): | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| model = AutoModelForObjectDetection.from_pretrained(checkpoint, torch_dtype=TORCH_DTYPE).to(device) | |
| image_processor = AutoImageProcessor.from_pretrained(checkpoint) | |
| batches = [images[i:i + batch_size] for i in range(0, len(images), batch_size)] | |
| results = [] | |
| for batch in tqdm.tqdm(batches, desc="Processing frames"): | |
| # preprocess images | |
| inputs = image_processor(images=batch, return_tensors="pt") | |
| inputs = inputs.to(device).to(TORCH_DTYPE) | |
| # forward pass | |
| with torch.no_grad(): | |
| outputs = model(**inputs) | |
| # postprocess outputs | |
| if target_size: | |
| target_sizes = [target_size] * len(batch) | |
| else: | |
| target_sizes = [(image.shape[0], image.shape[1]) for image in batch] | |
| batch_results = image_processor.post_process_object_detection( | |
| outputs, target_sizes=target_sizes, threshold=confidence_threshold | |
| ) | |
| results.extend(batch_results) | |
| return results, model.config.id2label | |
| def process_image( | |
| checkpoint: str = DEFAULT_CHECKPOINT, | |
| image: Optional[Image.Image] = None, | |
| url: Optional[str] = None, | |
| confidence_threshold: float = DEFAULT_CONFIDENCE_THRESHOLD, | |
| ): | |
| if (image is None) ^ bool(url): | |
| raise ValueError(f"Either image or url must be provided, but not both.") | |
| if url: | |
| image = load_image(url) | |
| results, id2label = detect_objects( | |
| checkpoint=checkpoint, | |
| images=[np.array(image)], | |
| confidence_threshold=confidence_threshold, | |
| ) | |
| result = results[0] # first image in batch (we have batch size 1) | |
| annotations = [] | |
| for label, score, box in zip(result["labels"], result["scores"], result["boxes"]): | |
| text_label = id2label[label.item()] | |
| formatted_label = f"{text_label} ({score:.2f})" | |
| x_min, y_min, x_max, y_max = box.cpu().numpy().round().astype(int) | |
| x_min = max(0, x_min) | |
| y_min = max(0, y_min) | |
| x_max = min(image.width - 1, x_max) | |
| y_max = min(image.height - 1, y_max) | |
| annotations.append(((x_min, y_min, x_max, y_max), formatted_label)) | |
| return (image, annotations) | |
| def get_target_size(image_height, image_width, max_size: int): | |
| if image_height < max_size and image_width < max_size: | |
| return image_width, image_height | |
| if image_height > image_width: | |
| new_height = max_size | |
| new_width = int(image_width * max_size / image_height) | |
| else: | |
| new_width = max_size | |
| new_height = int(image_height * max_size / image_width) | |
| return new_width, new_height | |
| def read_video_k_frames(video_path: str, k: int, read_every_i_frame: int = 1): | |
| cap = cv2.VideoCapture(video_path) | |
| frames = [] | |
| i = 0 | |
| progress_bar = tqdm.tqdm(total=k, desc="Reading frames") | |
| while cap.isOpened() and len(frames) < k: | |
| ret, frame = cap.read() | |
| if not ret: | |
| break | |
| if i % read_every_i_frame == 0: | |
| frames.append(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)) | |
| progress_bar.update(1) | |
| i += 1 | |
| cap.release() | |
| progress_bar.close() | |
| return frames | |
| def process_video( | |
| video_path: str, | |
| checkpoint: str, | |
| confidence_threshold: float = DEFAULT_CONFIDENCE_THRESHOLD, | |
| progress: gr.Progress = gr.Progress(track_tqdm=True), | |
| ) -> str: | |
| if not video_path or not os.path.isfile(video_path): | |
| raise ValueError(f"Invalid video path: {video_path}") | |
| ext = os.path.splitext(video_path)[1].lower() | |
| if ext not in ALLOWED_VIDEO_EXTENSIONS: | |
| raise ValueError(f"Unsupported video format: {ext}, supported formats: {ALLOWED_VIDEO_EXTENSIONS}") | |
| video_info = sv.VideoInfo.from_video_path(video_path) | |
| read_each_i_frame = video_info.fps // 25 | |
| target_fps = video_info.fps / read_each_i_frame | |
| target_width, target_height = get_target_size(video_info.height, video_info.width, 1080) | |
| n_frames_to_read = min(MAX_NUM_FRAMES, video_info.total_frames // read_each_i_frame) | |
| frames = read_video_k_frames(video_path, n_frames_to_read, read_each_i_frame) | |
| # Use H.264 codec for browser compatibility | |
| fourcc = cv2.VideoWriter_fourcc(*"H264") | |
| temp_file = tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) | |
| writer = cv2.VideoWriter(temp_file.name, fourcc, target_fps, (target_width, target_height)) | |
| box_annotator = sv.BoxAnnotator(thickness=1) | |
| label_annotator = sv.LabelAnnotator(text_scale=0.5) | |
| results, id2label = detect_objects( | |
| images=frames, | |
| checkpoint=checkpoint, | |
| confidence_threshold=confidence_threshold, | |
| target_size=(target_height, target_width), | |
| ) | |
| for frame, result in tqdm.tqdm(zip(frames, results), desc="Annotating frames", total=len(frames)): | |
| frame = cv2.resize(frame, (target_width, target_height), interpolation=cv2.INTER_AREA) | |
| detections = sv.Detections.from_transformers(result, id2label=id2label) | |
| detections = detections.with_nms(threshold=0.95, class_agnostic=True) | |
| annotated_frame = box_annotator.annotate(scene=frame, detections=detections) | |
| annotated_frame = label_annotator.annotate(scene=annotated_frame, detections=detections) | |
| writer.write(cv2.cvtColor(annotated_frame, cv2.COLOR_RGB2BGR)) | |
| writer.release() | |
| temp_file.close() | |
| # Copy to persistent directory for Gradio access | |
| output_filename = f"output_{os.path.basename(temp_file.name)}" | |
| output_path = VIDEO_OUTPUT_DIR / output_filename | |
| shutil.copy(temp_file.name, output_path) | |
| os.unlink(temp_file.name) # Remove temporary file | |
| logger.info(f"Video saved to {output_path}") | |
| return str(output_path) | |
| def create_image_inputs() -> List[gr.components.Component]: | |
| return [ | |
| gr.Image( | |
| label="Upload Image", | |
| type="pil", | |
| sources=["upload", "webcam"], | |
| interactive=True, | |
| elem_classes="input-component", | |
| ), | |
| gr.Checkbox(label="Use Image URL Instead", value=False), | |
| gr.Textbox( | |
| label="Image URL", | |
| placeholder="https://example.com/image.jpg", | |
| visible=False, | |
| elem_classes="input-component", | |
| ), | |
| gr.Dropdown( | |
| choices=CHECKPOINTS, | |
| label="Select Model Checkpoint", | |
| value=DEFAULT_CHECKPOINT, | |
| elem_classes="input-component", | |
| ), | |
| gr.Slider( | |
| minimum=0.1, | |
| maximum=1.0, | |
| value=DEFAULT_CONFIDENCE_THRESHOLD, | |
| step=0.1, | |
| label="Confidence Threshold", | |
| elem_classes="input-component", | |
| ), | |
| ] | |
| def create_video_inputs() -> List[gr.components.Component]: | |
| return [ | |
| gr.Video( | |
| label="Upload Video", | |
| sources=["upload"], | |
| interactive=True, | |
| format="mp4", # Ensure MP4 format | |
| elem_classes="input-component", | |
| ), | |
| gr.Dropdown( | |
| choices=CHECKPOINTS, | |
| label="Select Model Checkpoint", | |
| value=DEFAULT_CHECKPOINT, | |
| elem_classes="input-component", | |
| ), | |
| gr.Slider( | |
| minimum=0.1, | |
| maximum=1.0, | |
| value=DEFAULT_CONFIDENCE_THRESHOLD, | |
| step=0.1, | |
| label="Confidence Threshold", | |
| elem_classes="input-component", | |
| ), | |
| ] | |
| def create_button_row(is_image: bool) -> List[gr.Button]: | |
| prefix = "Image" if is_image else "Video" | |
| return [ | |
| gr.Button( | |
| f"{prefix} Detect Objects", variant="primary", elem_classes="action-button" | |
| ), | |
| gr.Button(f"{prefix} Clear", variant="secondary", elem_classes="action-button"), | |
| ] | |
| # Gradio interface | |
| with gr.Blocks(theme=gr.themes.Soft()) as demo: | |
| gr.Markdown( | |
| """ | |
| # Real-Time Object Detection Demo | |
| Experience state-of-the-art object detection with USTC's Dfine models. Upload an image or video, | |
| provide a URL, or try an example below. Select a model and adjust the confidence threshold to see detections in real time! | |
| """, | |
| elem_classes="header-text", | |
| ) | |
| with gr.Tabs(): | |
| with gr.Tab("Image"): | |
| with gr.Row(): | |
| with gr.Column(scale=1, min_width=300): | |
| with gr.Group(): | |
| ( | |
| image_input, | |
| use_url, | |
| url_input, | |
| image_model_checkpoint, | |
| image_confidence_threshold, | |
| ) = create_image_inputs() | |
| image_detect_button, image_clear_button = create_button_row( | |
| is_image=True | |
| ) | |
| with gr.Column(scale=2): | |
| image_output = gr.AnnotatedImage( | |
| label="Detection Results", | |
| show_label=True, | |
| color_map=None, | |
| elem_classes="output-component", | |
| ) | |
| gr.Examples( | |
| examples=[ | |
| [ | |
| example["path"], | |
| example["use_url"], | |
| example["url"], | |
| DEFAULT_CHECKPOINT, | |
| DEFAULT_CONFIDENCE_THRESHOLD, | |
| ] | |
| for example in IMAGE_EXAMPLES | |
| ], | |
| inputs=[ | |
| image_input, | |
| use_url, | |
| url_input, | |
| image_model_checkpoint, | |
| image_confidence_threshold, | |
| ], | |
| outputs=[image_output], | |
| fn=process_image, | |
| cache_examples=False, | |
| label="Select an image example to populate inputs", | |
| ) | |
| with gr.Tab("Video"): | |
| gr.Markdown( | |
| f"The input video will be processed in ~25 FPS (up to {MAX_NUM_FRAMES} frames in result)." | |
| ) | |
| with gr.Row(): | |
| with gr.Column(scale=1, min_width=300): | |
| with gr.Group(): | |
| video_input, video_checkpoint, video_confidence_threshold = ( | |
| create_video_inputs() | |
| ) | |
| video_detect_button, video_clear_button = create_button_row( | |
| is_image=False | |
| ) | |
| with gr.Column(scale=2): | |
| video_output = gr.Video( | |
| label="Detection Results", | |
| format="mp4", # Explicit MP4 format | |
| elem_classes="output-component", | |
| ) | |
| gr.Examples( | |
| examples=[ | |
| [example["path"], DEFAULT_CHECKPOINT, DEFAULT_CONFIDENCE_THRESHOLD] | |
| for example in VIDEO_EXAMPLES | |
| ], | |
| inputs=[video_input, video_checkpoint, video_confidence_threshold], | |
| outputs=[video_output], | |
| fn=process_video, | |
| cache_examples=False, | |
| label="Select a video example to populate inputs", | |
| ) | |
| # Dynamic visibility for URL input | |
| use_url.change( | |
| fn=lambda x: gr.update(visible=x), | |
| inputs=use_url, | |
| outputs=url_input, | |
| ) | |
| # Image clear button | |
| image_clear_button.click( | |
| fn=lambda: ( | |
| None, | |
| False, | |
| "", | |
| DEFAULT_CHECKPOINT, | |
| DEFAULT_CONFIDENCE_THRESHOLD, | |
| None, | |
| ), | |
| outputs=[ | |
| image_input, | |
| use_url, | |
| url_input, | |
| image_model_checkpoint, | |
| image_confidence_threshold, | |
| image_output, | |
| ], | |
| ) | |
| # Video clear button | |
| video_clear_button.click( | |
| fn=lambda: ( | |
| None, | |
| DEFAULT_CHECKPOINT, | |
| DEFAULT_CONFIDENCE_THRESHOLD, | |
| None, | |
| ), | |
| outputs=[ | |
| video_input, | |
| video_checkpoint, | |
| video_confidence_threshold, | |
| video_output, | |
| ], | |
| ) | |
| # Image detect button | |
| image_detect_button.click( | |
| fn=process_image, | |
| inputs=[ | |
| image_model_checkpoint, | |
| image_input, | |
| url_input, | |
| image_confidence_threshold, | |
| ], | |
| outputs=[image_output], | |
| ) | |
| # Video detect button | |
| video_detect_button.click( | |
| fn=process_video, | |
| inputs=[video_input, video_checkpoint, video_confidence_threshold], | |
| outputs=[video_output], | |
| ) | |
| if __name__ == "__main__": | |
| demo.queue(max_size=20).launch() | |