Spaces:
Sleeping
Sleeping
File size: 9,907 Bytes
8efe822 c5fa028 8efe822 1046c54 8efe822 95b8edf fbbab3d 8efe822 95b8edf 8efe822 5bf205b e61b0b7 fbbab3d 8efe822 26a1c37 8efe822 fbbab3d 8efe822 26a1c37 8efe822 c5fa028 8efe822 fbbab3d 8efe822 5bf205b 8efe822 fbbab3d 8efe822 c5fa028 8efe822 c5fa028 8efe822 c5fa028 8efe822 c5fa028 8efe822 c5fa028 8efe822 c5fa028 fbbab3d c5fa028 fbbab3d c5fa028 fbbab3d 8efe822 c5fa028 8efe822 c5fa028 8efe822 c5fa028 fbbab3d 8efe822 fbbab3d 8efe822 fbbab3d 8efe822 fbbab3d 8efe822 fbbab3d 8efe822 fbbab3d 8efe822 fbbab3d 8efe822 fbbab3d 8efe822 fbbab3d 8efe822 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 |
import streamlit as st
from PyPDF2 import PdfReader
from langchain_core.messages import HumanMessage, AIMessage
from langchain_core.messages import SystemMessage
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain.chains import LLMChain
from langchain.prompts import PromptTemplate
from langchain.memory import ConversationSummaryMemory
from langchain.memory.chat_message_histories import StreamlitChatMessageHistory
import base64
import io
import time
from PIL import Image
import os
# Set your Google API key here
GOOGLE_API_KEY = os.environ.get("api_key")
def convert_to_base64(uploaded_file):
image = Image.open(uploaded_file)
buffered = io.BytesIO()
format = image.format if image.format in ["JPEG", "PNG"] else "PNG"
image.save(buffered, format=format)
return base64.b64encode(buffered.getvalue()).decode("utf-8")
def text():
st.title("Gemini Psychology Demo")
st.sidebar.title("Capabilities:")
st.sidebar.markdown("""
- **Text Queries**
- **Visual Queries**
- **PDF Support**
""")
st.markdown("""
<style>
.anim-typewriter {
animation: typewriter 3s steps(40) 1s 1 normal both,
blinkTextCursor 800ms steps(40) infinite normal;
overflow: hidden;
white-space: nowrap;
border-right: 3px solid;
font-family: serif;
font-size: 0.9em;
}
@keyframes typewriter {
from { width: 0; }
to { width: 100%; }
}
@keyframes blinkTextCursor {
from { border-right-color: rgba(255,255,255,0.75); }
to { border-right-color: transparent; }
}
.dot-pulse {
position: relative;
left: -9999px;
width: 10px;
height: 10px;
border-radius: 5px;
background-color: #9880ff;
color: #9880ff;
box-shadow: 9999px 0 0 -5px;
animation: dot-pulse 1.5s infinite linear;
animation-delay: 0.25s;
}
</style>
""", unsafe_allow_html=True)
if "messages" not in st.session_state:
st.session_state.messages = []
st.session_state.chat_history = StreamlitChatMessageHistory()
st.session_state.memory = ConversationSummaryMemory(
llm=ChatGoogleGenerativeAI(model="gemini-2.5-flash", google_api_key=GOOGLE_API_KEY),
memory_key="history",
chat_memory=st.session_state.chat_history
)
system_prompt = (
"You are a compassionate and emotionally intelligent AI assistant trained in cognitive behavioral therapy (CBT), "
"mindfulness, and active listening. You provide supportive, empathetic responses without making medical diagnoses. "
"Use a warm tone and guide users to explore their feelings, reframe thoughts, and reflect gently."
)
st.session_state.chat_history.add_message(SystemMessage(content=system_prompt))
llm = ChatGoogleGenerativeAI(
model="gemini-2.5-flash",
google_api_key=GOOGLE_API_KEY,
temperature=0.3,
streaming=True,
timeout=120,
max_retries=6
)
chat_container = st.container()
with chat_container:
if len(st.session_state.messages) == 0:
animated_text = '<div class="anim-typewriter">Hey 👋 Let’s dive into the mind together.</div>'
st.session_state.messages.append({"role": "assistant", "content": "Hey 👋 Let’s dive into the mind together."})
for message in st.session_state.messages:
if message["role"] == "user":
if message.get("image"):
st.chat_message("user", avatar="🧑").markdown(
f"""{message["content"]}<br><br>{'<img src="' + message["image"] + f'" width="50" style="margin-top: 10px; border-radius: 8px;">' if message["file_type"] == "application/pdf" else '<img src="' + message["image"] + f'" width="200" style="margin-top: 10px; border-radius: 8px;">'}<br> {f'<i style="font-size: 12px;">{message["file_name"]}</i>' if message["file_type"] == "application/pdf" else message["file_name"] if message["file_type"] else ''}""",
unsafe_allow_html=True
)
else:
st.chat_message("user", avatar="🧑").markdown(message["content"])
else:
st.chat_message("assistant", avatar="🤖").markdown(message["content"])
user_input = st.chat_input("Say something", accept_file=True, file_type=["png", "jpg", "jpeg", "pdf"])
if user_input:
file_type = None
file_name = ""
image_base64 = convert_to_base64("pdf_icon.png")
image_url = f"data:image/jpeg;base64,{image_base64}"
message_content = [{"type": "text", "text": user_input.text}]
files = user_input["files"]
if files:
file_type = files[0].type
if file_type in ["image/png", "image/jpg", "image/jpeg"]:
uploaded_file = user_input["files"][0]
image_base64 = convert_to_base64(uploaded_file)
image_url = f"data:image/jpeg;base64,{image_base64}"
message_content.append({"type": "image_url", "image_url": image_url})
text = ""
if file_type == "application/pdf":
uploaded_file = user_input["files"][0]
file_name = files[0].name
pdf_reader = PdfReader(uploaded_file)
for page in pdf_reader.pages:
text += page.extract_text()
prompt = "this is pdf data: \n" + text + "this is user asking about pdf:" + user_input.text
message_content = [{"type": "text", "text": prompt}]
message_content.append({"type": "text", "text": file_name})
with chat_container:
if file_type:
st.chat_message("user", avatar="🧑").markdown(
f"""
{user_input.text}
<br><br>
{'<img src="' + image_url + f'" width="50" style="margin-top: 10px; border-radius: 8px;">' if file_type == "application/pdf" else '<img src="' + image_url + f'" width="200" style="margin-top: 10px; border-radius: 8px;">' if file_type else ''}
<br>
{f'<i style="font-size: 12px;">{file_name}</i>' if file_type == "application/pdf" else file_name if file_type else ''}
""",
unsafe_allow_html=True
)
else:
st.chat_message("user", avatar="🧑").markdown(user_input.text)
st.session_state.messages.append({
"role": "user",
"content": user_input.text,
"image": image_url if user_input["files"] else "",
"file_name": file_name,
"file_type": file_type
})
user_message = HumanMessage(content=message_content)
st.session_state.chat_history.add_message(user_message)
# Ensure valid message history (SystemMessage only at index 0)
history = st.session_state.chat_history.messages
valid_history = [msg for msg in history if not isinstance(msg, SystemMessage)]
valid_history = [history[0]] + valid_history # Keep the first SystemMessage only
typing_container = st.empty()
def stream_generator(valid_history, user_message):
typing_container = st.empty()
typing_container.markdown('<p class="fade-text">Thinking...</p>', unsafe_allow_html=True)
st.markdown("""
<style>
@keyframes fade {
0% { opacity: 0.3; }
50% { opacity: 1; }
100% { opacity: 0.3; }
}
.fade-text {
font-size: 16px;
font-weight: bold;
color: #3498db;
animation: fade 1.5s infinite;
}
</style>
""", unsafe_allow_html=True)
response = llm.stream(valid_history + [user_message])
buffer = ""
first_chunk_received = False
PAUSE_AFTER = {".", "!", "?", ",", ";", ":"}
PAUSE_MULTIPLIER = 2.5
for chunk in response:
if not first_chunk_received:
typing_container.empty()
typing_container.markdown('<p class="fade-text">Typing...</p>', unsafe_allow_html=True)
first_chunk_received = True
content = buffer + chunk.content
words = content.split(' ')
if not content.endswith(' '):
buffer = words.pop()
else:
buffer = ""
for word in words:
yield word + ' '
base_delay = 0.03
last_char = word[-1] if word else ''
time.sleep(base_delay * PAUSE_MULTIPLIER if last_char in PAUSE_AFTER else base_delay)
if buffer:
yield buffer
time.sleep(0.03)
typing_container.empty()
with st.chat_message("assistant", avatar="🤖"):
full_response = st.write_stream(
stream_generator(valid_history, user_message)
)
typing_container.empty()
st.session_state.messages.append({
"role": "assistant",
"content": full_response
})
ai_message = AIMessage(content=full_response)
st.session_state.chat_history.add_message(ai_message)
st.session_state.memory.save_context(
{"input": user_message.content},
{"output": ai_message.content}
)
|