Spaces:
Runtime error
Runtime error
| from langchain_community.llms import HuggingFaceHub | |
| from langchain_community.vectorstores import Chroma | |
| from langchain_community.embeddings import HuggingFaceEmbeddings | |
| from langchain.text_splitter import CharacterTextSplitter | |
| from langchain.prompts import PromptTemplate | |
| from langchain.chains.question_answering import load_qa_chain | |
| from datasets import load_dataset | |
| import pandas as pd | |
| from functools import lru_cache | |
| import gradio as gr | |
| from huggingface_hub import InferenceClient | |
| # Ensure you have set your Hugging Face API token here or as an environment variable | |
| # Initialize the Hugging Face Inference Client | |
| client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") | |
| # Load dataset | |
| dataset = load_dataset('arbml/LK_Hadith') | |
| df = pd.DataFrame(dataset['train']) | |
| # Filter data | |
| filtered_df = df[df['Arabic_Grade'] != 'ΨΆΨΉΩΩ'] | |
| documents = list(filtered_df['Arabic_Matn']) | |
| metadatas = [{"Hadith_Grade": grade} for grade in filtered_df['Arabic_Grade']] | |
| # Use CharacterTextSplitter | |
| text_splitter = CharacterTextSplitter(chunk_size=10000) | |
| nltk_chunks = text_splitter.create_documents(documents, metadatas=metadatas) | |
| # LLM - Using HuggingFaceHub with API token | |
| llm = HuggingFaceHub(repo_id="salmatrafi/acegpt:7b", huggingfacehub_api_token=HUGGINGFACEHUB_API_TOKEN) | |
| # Create an embedding model | |
| embeddings = HuggingFaceEmbeddings(model_name="intfloat/multilingual-e5-base", huggingfacehub_api_token=HUGGINGFACEHUB_API_TOKEN) | |
| docs_text = [doc.page_content for doc in nltk_chunks] | |
| docs_embedding = embeddings.embed_documents(docs_text) | |
| # Create Chroma vector store | |
| vector_store = Chroma.from_documents(nltk_chunks, embedding=embeddings) | |
| # Question answering prompt template | |
| qna_template = "\n".join([ | |
| "Answer the next question using the provided context.", | |
| "If the answer is not contained in the context, say 'NO ANSWER IS AVAILABLE'", | |
| "### Context:", | |
| "{context}", | |
| "", | |
| "### Question:", | |
| "{question}", | |
| "", | |
| "### Answer:", | |
| ]) | |
| qna_prompt = PromptTemplate( | |
| template=qna_template, | |
| input_variables=['context', 'question'], | |
| verbose=True | |
| ) | |
| # Combine intermediate context template | |
| combine_template = "\n".join([ | |
| "Given intermediate contexts for a question, generate a final answer.", | |
| "If the answer is not contained in the intermediate contexts, say 'NO ANSWER IS AVAILABLE'", | |
| "### Summaries:", | |
| "{summaries}", | |
| "", | |
| "### Question:", | |
| "{question}", | |
| "", | |
| "### Final Answer:", | |
| ]) | |
| combine_prompt = PromptTemplate( | |
| template=combine_template, | |
| input_variables=['summaries', 'question'], | |
| ) | |
| # Load map-reduce chain for question answering | |
| map_reduce_chain = load_qa_chain(llm, chain_type="map_reduce", | |
| return_intermediate_steps=True, | |
| question_prompt=qna_prompt, | |
| combine_prompt=combine_prompt) | |
| # Function to preprocess the query (handling long inputs) | |
| def preprocess_query(query): | |
| if len(query) > 512: # Arbitrary length, adjust based on LLM input limits | |
| query = query[:512] + "..." | |
| return query | |
| # Caching mechanism for frequently asked questions | |
| # Cache up to 100 recent queries | |
| def answer_query(query): | |
| query = preprocess_query(query) | |
| try: | |
| # Search for similar documents in vector store | |
| similar_docs = vector_store.similarity_search(query, k=5) | |
| if not similar_docs: | |
| return "No relevant documents found." | |
| # Run map-reduce chain to get the answer | |
| final_answer = map_reduce_chain({ | |
| "input_documents": similar_docs, | |
| "question": query | |
| }, return_only_outputs=True) | |
| output_text = final_answer.get('output_text', "No answer generated by the model.") | |
| except Exception as e: | |
| output_text = f"An error occurred: {str(e)}" | |
| return output_text | |
| # Gradio Chatbot response function using Hugging Face Inference Client | |
| def respond( | |
| message, | |
| history: list[tuple[str, str]], | |
| system_message, | |
| max_tokens, | |
| temperature, | |
| top_p, | |
| ): | |
| messages = [{"role": "system", "content": system_message}] | |
| for val in history: | |
| if val[0]: | |
| messages.append({"role": "user", "content": val[0]}) | |
| if val[1]: | |
| messages.append({"role": "assistant", "content": val[1]}) | |
| messages.append({"role": "user", "content": message}) | |
| response = "" | |
| for msg in client.chat_completion( | |
| messages, | |
| max_tokens=max_tokens, | |
| stream=True, | |
| temperature=temperature, | |
| top_p=top_p, | |
| ): | |
| token = msg.choices[0].delta.content | |
| response += token | |
| yield response | |
| # Gradio Chat Interface | |
| demo = gr.ChatInterface( | |
| respond, | |
| additional_inputs=[ | |
| gr.Textbox(value="You are a friendly Chatbot.", label="System message"), | |
| gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
| gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
| gr.Slider( | |
| minimum=0.1, | |
| maximum=1.0, | |
| value=0.95, | |
| step=0.05, | |
| label="Top-p (nucleus sampling)", | |
| ), | |
| ], | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() | |