Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,12 +1,119 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
from huggingface_hub import InferenceClient
|
| 3 |
|
| 4 |
-
|
| 5 |
-
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
| 6 |
-
"""
|
| 7 |
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
| 8 |
|
|
|
|
|
|
|
|
|
|
| 9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
def respond(
|
| 11 |
message,
|
| 12 |
history: list[tuple[str, str]],
|
|
@@ -27,21 +134,18 @@ def respond(
|
|
| 27 |
|
| 28 |
response = ""
|
| 29 |
|
| 30 |
-
for
|
| 31 |
messages,
|
| 32 |
max_tokens=max_tokens,
|
| 33 |
stream=True,
|
| 34 |
temperature=temperature,
|
| 35 |
top_p=top_p,
|
| 36 |
):
|
| 37 |
-
token =
|
| 38 |
-
|
| 39 |
response += token
|
| 40 |
yield response
|
| 41 |
|
| 42 |
-
|
| 43 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
| 44 |
-
"""
|
| 45 |
demo = gr.ChatInterface(
|
| 46 |
respond,
|
| 47 |
additional_inputs=[
|
|
@@ -58,6 +162,5 @@ demo = gr.ChatInterface(
|
|
| 58 |
],
|
| 59 |
)
|
| 60 |
|
| 61 |
-
|
| 62 |
if __name__ == "__main__":
|
| 63 |
-
demo.launch()
|
|
|
|
| 1 |
+
from langchain_community.llms import Ollama
|
| 2 |
+
from langchain_community.vectorstores import Chroma
|
| 3 |
+
from langchain_community.embeddings import SentenceTransformerEmbeddings
|
| 4 |
+
from langchain.text_splitter import CharacterTextSplitter
|
| 5 |
+
from langchain.prompts import PromptTemplate
|
| 6 |
+
from langchain.chains.question_answering import load_qa_chain
|
| 7 |
+
from datasets import load_dataset
|
| 8 |
+
import pandas as pd
|
| 9 |
+
from functools import lru_cache
|
| 10 |
+
from langchain_huggingface import HuggingFaceEmbeddings
|
| 11 |
import gradio as gr
|
| 12 |
from huggingface_hub import InferenceClient
|
| 13 |
|
| 14 |
+
# Initialize the Hugging Face Inference Client
|
|
|
|
|
|
|
| 15 |
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
| 16 |
|
| 17 |
+
# Load dataset
|
| 18 |
+
dataset = load_dataset('arbml/LK_Hadith')
|
| 19 |
+
df = pd.DataFrame(dataset['train'])
|
| 20 |
|
| 21 |
+
# Filter data
|
| 22 |
+
filtered_df = df[df['Arabic_Grade'] != 'ΨΆΨΉΩΩ']
|
| 23 |
+
documents = list(filtered_df['Arabic_Matn'])
|
| 24 |
+
metadatas = [{"Hadith_Grade": grade} for grade in filtered_df['Arabic_Grade']]
|
| 25 |
+
|
| 26 |
+
# Use CharacterTextSplitter
|
| 27 |
+
text_splitter = CharacterTextSplitter(chunk_size=10000)
|
| 28 |
+
nltk_chunks = text_splitter.create_documents(documents, metadatas=metadatas)
|
| 29 |
+
|
| 30 |
+
# LLM
|
| 31 |
+
llm = Ollama(model="llama3")
|
| 32 |
+
|
| 33 |
+
# Create an embedding model
|
| 34 |
+
embeddings = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2")
|
| 35 |
+
|
| 36 |
+
docs_text = [doc.page_content for doc in nltk_chunks]
|
| 37 |
+
docs_embedding = embeddings.embed_documents(docs_text)
|
| 38 |
+
|
| 39 |
+
# Create Chroma vector store
|
| 40 |
+
vector_store = Chroma.from_documents(nltk_chunks, embedding=embeddings)
|
| 41 |
+
|
| 42 |
+
# Question answering prompt template
|
| 43 |
+
qna_template = "\n".join([
|
| 44 |
+
"Answer the next question using the provided context.",
|
| 45 |
+
"If the answer is not contained in the context, say 'NO ANSWER IS AVAILABLE'",
|
| 46 |
+
"### Context:",
|
| 47 |
+
"{context}",
|
| 48 |
+
"",
|
| 49 |
+
"### Question:",
|
| 50 |
+
"{question}",
|
| 51 |
+
"",
|
| 52 |
+
"### Answer:",
|
| 53 |
+
])
|
| 54 |
+
|
| 55 |
+
qna_prompt = PromptTemplate(
|
| 56 |
+
template=qna_template,
|
| 57 |
+
input_variables=['context', 'question'],
|
| 58 |
+
verbose=True
|
| 59 |
+
)
|
| 60 |
+
|
| 61 |
+
# Combine intermediate context template
|
| 62 |
+
combine_template = "\n".join([
|
| 63 |
+
"Given intermediate contexts for a question, generate a final answer.",
|
| 64 |
+
"If the answer is not contained in the intermediate contexts, say 'NO ANSWER IS AVAILABLE'",
|
| 65 |
+
"### Summaries:",
|
| 66 |
+
"{summaries}",
|
| 67 |
+
"",
|
| 68 |
+
"### Question:",
|
| 69 |
+
"{question}",
|
| 70 |
+
"",
|
| 71 |
+
"### Final Answer:",
|
| 72 |
+
])
|
| 73 |
+
|
| 74 |
+
combine_prompt = PromptTemplate(
|
| 75 |
+
template=combine_template,
|
| 76 |
+
input_variables=['summaries', 'question'],
|
| 77 |
+
)
|
| 78 |
+
|
| 79 |
+
# Load map-reduce chain for question answering
|
| 80 |
+
map_reduce_chain = load_qa_chain(llm, chain_type="map_reduce",
|
| 81 |
+
return_intermediate_steps=True,
|
| 82 |
+
question_prompt=qna_prompt,
|
| 83 |
+
combine_prompt=combine_prompt)
|
| 84 |
+
|
| 85 |
+
# Function to preprocess the query (handling long inputs)
|
| 86 |
+
def preprocess_query(query):
|
| 87 |
+
if len(query) > 512: # Arbitrary length, adjust based on LLM input limits
|
| 88 |
+
query = query[:512] + "..."
|
| 89 |
+
return query
|
| 90 |
+
|
| 91 |
+
# Caching mechanism for frequently asked questions
|
| 92 |
+
@lru_cache(maxsize=100) # Cache up to 100 recent queries
|
| 93 |
+
def answer_query(query):
|
| 94 |
+
query = preprocess_query(query)
|
| 95 |
+
|
| 96 |
+
try:
|
| 97 |
+
# Search for similar documents in vector store
|
| 98 |
+
similar_docs = vector_store.similarity_search(query, k=5)
|
| 99 |
+
|
| 100 |
+
if not similar_docs:
|
| 101 |
+
return "No relevant documents found."
|
| 102 |
+
|
| 103 |
+
# Run map-reduce chain to get the answer
|
| 104 |
+
final_answer = map_reduce_chain({
|
| 105 |
+
"input_documents": similar_docs,
|
| 106 |
+
"question": query
|
| 107 |
+
}, return_only_outputs=True)
|
| 108 |
+
|
| 109 |
+
output_text = final_answer.get('output_text', "No answer generated by the model.")
|
| 110 |
+
|
| 111 |
+
except Exception as e:
|
| 112 |
+
output_text = f"An error occurred: {str(e)}"
|
| 113 |
+
|
| 114 |
+
return output_text
|
| 115 |
+
|
| 116 |
+
# Gradio Chatbot response function using Hugging Face Inference Client
|
| 117 |
def respond(
|
| 118 |
message,
|
| 119 |
history: list[tuple[str, str]],
|
|
|
|
| 134 |
|
| 135 |
response = ""
|
| 136 |
|
| 137 |
+
for msg in client.chat_completion(
|
| 138 |
messages,
|
| 139 |
max_tokens=max_tokens,
|
| 140 |
stream=True,
|
| 141 |
temperature=temperature,
|
| 142 |
top_p=top_p,
|
| 143 |
):
|
| 144 |
+
token = msg.choices[0].delta.content
|
|
|
|
| 145 |
response += token
|
| 146 |
yield response
|
| 147 |
|
| 148 |
+
# Gradio Chat Interface
|
|
|
|
|
|
|
| 149 |
demo = gr.ChatInterface(
|
| 150 |
respond,
|
| 151 |
additional_inputs=[
|
|
|
|
| 162 |
],
|
| 163 |
)
|
| 164 |
|
|
|
|
| 165 |
if __name__ == "__main__":
|
| 166 |
+
demo.launch()
|