Spaces:
Build error
Build error
Commit
Β·
e37cfd0
1
Parent(s):
2bdd84f
New Improvement in Pages
Browse files- .gitattributes +1 -1
- .gitignore +1 -0
- __pycache__/utils.cpython-311.pyc +0 -0
- app.py +25 -6
- pages/Conversion.py +31 -4
- pages/Dataset_Management.py +1 -1
- pages/Finetune.py +30 -36
- requirements.txt +3 -1
- utils.py +29 -2
.gitattributes
CHANGED
|
@@ -32,4 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 32 |
*.xz filter=lfs diff=lfs merge=lfs -text
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
-
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
| 32 |
*.xz filter=lfs diff=lfs merge=lfs -text
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
.gitignore
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
*.env
|
__pycache__/utils.cpython-311.pyc
ADDED
|
Binary file (24.6 kB). View file
|
|
|
app.py
CHANGED
|
@@ -2,17 +2,36 @@ import streamlit as st
|
|
| 2 |
|
| 3 |
st.set_page_config(page_title="Gemma LLM Fine-Tuning UI", layout="wide")
|
| 4 |
|
|
|
|
| 5 |
st.title("Gemma LLM Fine-Tuning Suite π")
|
| 6 |
st.markdown("""
|
| 7 |
-
### π₯
|
| 8 |
- **Chat**: Interact with the model.
|
| 9 |
- **Fine-tuning**: Train on `train_data.csv` or upload new datasets.
|
| 10 |
- **Conversion**: Export models to TorchScript and ONNX.
|
| 11 |
- **Dataset Management**: View and add to your training data.
|
| 12 |
""")
|
| 13 |
|
| 14 |
-
#
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
|
| 3 |
st.set_page_config(page_title="Gemma LLM Fine-Tuning UI", layout="wide")
|
| 4 |
|
| 5 |
+
# Main Page Title and Description
|
| 6 |
st.title("Gemma LLM Fine-Tuning Suite π")
|
| 7 |
st.markdown("""
|
| 8 |
+
### π₯ Multi-page AI Model Trainer
|
| 9 |
- **Chat**: Interact with the model.
|
| 10 |
- **Fine-tuning**: Train on `train_data.csv` or upload new datasets.
|
| 11 |
- **Conversion**: Export models to TorchScript and ONNX.
|
| 12 |
- **Dataset Management**: View and add to your training data.
|
| 13 |
""")
|
| 14 |
|
| 15 |
+
# Sidebar Navigation with Custom Labels
|
| 16 |
+
st.sidebar.title("Navigation")
|
| 17 |
+
nav_options = [
|
| 18 |
+
"πΉ Chat",
|
| 19 |
+
"πΉ Fine-tuning",
|
| 20 |
+
"πΉ Conversion",
|
| 21 |
+
"πΉ Dataset Management"
|
| 22 |
+
]
|
| 23 |
+
selected_page = st.sidebar.radio("Go to", nav_options)
|
| 24 |
+
|
| 25 |
+
# Page Content based on Navigation Selection
|
| 26 |
+
if selected_page == "πΉ Chat":
|
| 27 |
+
st.header("Chat with Gemma")
|
| 28 |
+
st.write("Interact with the model in a conversational interface. Coming soon!")
|
| 29 |
+
elif selected_page == "πΉ Fine-tuning":
|
| 30 |
+
st.header("Fine-tuning Gemma")
|
| 31 |
+
st.write("Fine-tune your Gemma model using your dataset. Coming soon!")
|
| 32 |
+
elif selected_page == "πΉ Conversion":
|
| 33 |
+
st.header("Model Conversion")
|
| 34 |
+
st.write("Convert your model to various formats. Coming soon!")
|
| 35 |
+
elif selected_page == "πΉ Dataset Management":
|
| 36 |
+
st.header("Dataset Management")
|
| 37 |
+
st.write("Manage your training datasets. Coming soon!")
|
pages/Conversion.py
CHANGED
|
@@ -1,5 +1,13 @@
|
|
| 1 |
import streamlit as st
|
| 2 |
-
from utils import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
|
| 4 |
st.title("π§ Model Conversion")
|
| 5 |
|
|
@@ -10,15 +18,34 @@ hf_token = get_hf_token()
|
|
| 10 |
model_path = "fine_tuned_model.pt"
|
| 11 |
tokenizer, model = load_model("google/gemma-3-1b-it", hf_token, model_path)
|
| 12 |
|
| 13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
|
| 15 |
if st.button("Convert Model"):
|
| 16 |
if conversion_option == "TorchScript":
|
| 17 |
with st.spinner("Converting to TorchScript..."):
|
| 18 |
ts_model = convert_to_torchscript(model)
|
| 19 |
st.success("Model converted to TorchScript!")
|
| 20 |
-
|
| 21 |
elif conversion_option == "ONNX":
|
| 22 |
with st.spinner("Converting to ONNX..."):
|
| 23 |
onnx_path = convert_to_onnx(model)
|
| 24 |
-
st.success("Model converted to ONNX!")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
+
from utils import (
|
| 3 |
+
load_model,
|
| 4 |
+
convert_to_torchscript,
|
| 5 |
+
convert_to_onnx,
|
| 6 |
+
convert_to_gguf,
|
| 7 |
+
convert_to_tf_saved_model,
|
| 8 |
+
convert_to_pytorch,
|
| 9 |
+
get_hf_token
|
| 10 |
+
)
|
| 11 |
|
| 12 |
st.title("π§ Model Conversion")
|
| 13 |
|
|
|
|
| 18 |
model_path = "fine_tuned_model.pt"
|
| 19 |
tokenizer, model = load_model("google/gemma-3-1b-it", hf_token, model_path)
|
| 20 |
|
| 21 |
+
# Select conversion format
|
| 22 |
+
conversion_option = st.selectbox(
|
| 23 |
+
"Select Conversion Format",
|
| 24 |
+
["TorchScript", "ONNX", "GGUF", "TensorFlow SavedModel", "PyTorch"]
|
| 25 |
+
)
|
| 26 |
|
| 27 |
if st.button("Convert Model"):
|
| 28 |
if conversion_option == "TorchScript":
|
| 29 |
with st.spinner("Converting to TorchScript..."):
|
| 30 |
ts_model = convert_to_torchscript(model)
|
| 31 |
st.success("Model converted to TorchScript!")
|
| 32 |
+
|
| 33 |
elif conversion_option == "ONNX":
|
| 34 |
with st.spinner("Converting to ONNX..."):
|
| 35 |
onnx_path = convert_to_onnx(model)
|
| 36 |
+
st.success(f"Model converted to ONNX! Saved at: {onnx_path}")
|
| 37 |
+
|
| 38 |
+
elif conversion_option == "GGUF":
|
| 39 |
+
with st.spinner("Converting to GGUF..."):
|
| 40 |
+
gguf_path = convert_to_gguf(model)
|
| 41 |
+
st.success(f"Model converted to GGUF! Saved at: {gguf_path}")
|
| 42 |
+
|
| 43 |
+
elif conversion_option == "TensorFlow SavedModel":
|
| 44 |
+
with st.spinner("Converting to TensorFlow SavedModel..."):
|
| 45 |
+
tf_path = convert_to_tf_saved_model(model)
|
| 46 |
+
st.success(f"Model converted to TensorFlow SavedModel! Saved at: {tf_path}")
|
| 47 |
+
|
| 48 |
+
elif conversion_option == "PyTorch":
|
| 49 |
+
with st.spinner("Converting to PyTorch..."):
|
| 50 |
+
pytorch_path = convert_to_pytorch(model)
|
| 51 |
+
st.success(f"Model saved in PyTorch format! Saved at: {pytorch_path}")
|
pages/Dataset_Management.py
CHANGED
|
@@ -98,7 +98,7 @@ tabs = st.tabs([
|
|
| 98 |
with tabs[0]:
|
| 99 |
st.subheader("π Current Dataset Preview")
|
| 100 |
if not df.empty:
|
| 101 |
-
st.dataframe(df
|
| 102 |
st.markdown("#### π Basic Statistics")
|
| 103 |
st.write(df.describe(include="all"))
|
| 104 |
else:
|
|
|
|
| 98 |
with tabs[0]:
|
| 99 |
st.subheader("π Current Dataset Preview")
|
| 100 |
if not df.empty:
|
| 101 |
+
st.dataframe(df)
|
| 102 |
st.markdown("#### π Basic Statistics")
|
| 103 |
st.write(df.describe(include="all"))
|
| 104 |
else:
|
pages/Finetune.py
CHANGED
|
@@ -59,19 +59,13 @@ elif finetune_option == "Refinetune existing model":
|
|
| 59 |
# -------------------------------
|
| 60 |
# Dataset Selection
|
| 61 |
# -------------------------------
|
| 62 |
-
|
| 63 |
st.subheader("π Dataset Selection")
|
| 64 |
-
|
| 65 |
-
# Dataset source selection
|
| 66 |
dataset_option = st.radio("Choose dataset:", ["Upload New Dataset", "Use Existing Dataset (`train_data.csv`)"])
|
| 67 |
-
|
| 68 |
-
dataset_path = "train_data.csv"
|
| 69 |
|
| 70 |
if dataset_option == "Upload New Dataset":
|
| 71 |
uploaded_file = st.file_uploader("π€ Upload Dataset (CSV or JSON)", type=["csv", "json"])
|
| 72 |
-
|
| 73 |
if uploaded_file is not None:
|
| 74 |
-
# Handle CSV or JSON upload
|
| 75 |
if uploaded_file.name.endswith(".csv"):
|
| 76 |
new_data = pd.read_csv(uploaded_file)
|
| 77 |
elif uploaded_file.name.endswith(".json"):
|
|
@@ -81,14 +75,12 @@ if dataset_option == "Upload New Dataset":
|
|
| 81 |
st.error("β Unsupported file format. Please upload CSV or JSON.")
|
| 82 |
st.stop()
|
| 83 |
|
| 84 |
-
# Append or create new dataset
|
| 85 |
if os.path.exists(dataset_path):
|
| 86 |
new_data.to_csv(dataset_path, mode='a', index=False, header=False)
|
| 87 |
st.success(f"β
Data appended to `{dataset_path}`!")
|
| 88 |
else:
|
| 89 |
new_data.to_csv(dataset_path, index=False)
|
| 90 |
st.success(f"β
Dataset saved as `{dataset_path}`!")
|
| 91 |
-
|
| 92 |
elif dataset_option == "Use Existing Dataset (`train_data.csv`)":
|
| 93 |
if os.path.exists(dataset_path):
|
| 94 |
st.success("β
Using existing `train_data.csv` for fine-tuning.")
|
|
@@ -99,69 +91,71 @@ elif dataset_option == "Use Existing Dataset (`train_data.csv`)":
|
|
| 99 |
# -------------------------------
|
| 100 |
# Hyperparameters Configuration
|
| 101 |
# -------------------------------
|
|
|
|
| 102 |
learning_rate = st.number_input("π Learning Rate", value=1e-4, format="%.5f")
|
| 103 |
batch_size = st.number_input("π οΈ Batch Size", value=16, step=1)
|
| 104 |
epochs = st.number_input("β±οΈ Epochs", value=3, step=1)
|
| 105 |
|
|
|
|
| 106 |
# -------------------------------
|
| 107 |
-
# Fine-tuning Execution
|
| 108 |
# -------------------------------
|
| 109 |
if st.button("π Start Fine-tuning"):
|
| 110 |
-
st.info(
|
| 111 |
-
|
| 112 |
-
# Retrieve Hugging Face Token
|
| 113 |
hf_token = get_hf_token()
|
| 114 |
|
| 115 |
# Model loading logic
|
| 116 |
if finetune_option == "Refinetune existing model" and saved_model_path:
|
| 117 |
-
# Load the base model first
|
| 118 |
tokenizer, model = load_model("google/gemma-3-1b-it", hf_token)
|
| 119 |
-
|
| 120 |
-
# Load the saved model checkpoint for re-finetuning
|
| 121 |
model = load_finetuned_model(model, saved_model_path)
|
| 122 |
-
|
| 123 |
if model:
|
| 124 |
st.success(f"β
Loaded saved model: `{saved_model_path}` for refinement!")
|
| 125 |
else:
|
| 126 |
st.error("β Failed to load the saved model. Aborting.")
|
| 127 |
st.stop()
|
| 128 |
-
|
| 129 |
else:
|
| 130 |
-
# Fine-tune from scratch (load base model)
|
| 131 |
if not selected_model:
|
| 132 |
st.error("β Please select a model to fine-tune.")
|
| 133 |
st.stop()
|
| 134 |
-
|
| 135 |
tokenizer, model = load_model(selected_model, hf_token)
|
| 136 |
-
|
| 137 |
if model:
|
| 138 |
st.success(f"β
Base model loaded: `{selected_model}`")
|
| 139 |
else:
|
| 140 |
st.error("β Failed to load the base model. Aborting.")
|
| 141 |
st.stop()
|
| 142 |
|
| 143 |
-
#
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 152 |
# Save fine-tuned model with timestamp
|
| 153 |
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
| 154 |
-
|
|
|
|
| 155 |
|
| 156 |
-
# Save the fine-tuned model
|
| 157 |
saved_model_path = save_model(model, new_model_name)
|
| 158 |
-
|
| 159 |
if saved_model_path:
|
| 160 |
st.success(f"β
Fine-tuning completed! Model saved as `{saved_model_path}`")
|
| 161 |
-
|
| 162 |
-
# Load the fine-tuned model for immediate inference
|
| 163 |
model = load_finetuned_model(model, saved_model_path)
|
| 164 |
-
|
| 165 |
if model:
|
| 166 |
st.success("π οΈ Fine-tuned model loaded and ready for inference!")
|
| 167 |
else:
|
|
|
|
| 59 |
# -------------------------------
|
| 60 |
# Dataset Selection
|
| 61 |
# -------------------------------
|
|
|
|
| 62 |
st.subheader("π Dataset Selection")
|
|
|
|
|
|
|
| 63 |
dataset_option = st.radio("Choose dataset:", ["Upload New Dataset", "Use Existing Dataset (`train_data.csv`)"])
|
| 64 |
+
dataset_path = "datasets/train_data.csv"
|
|
|
|
| 65 |
|
| 66 |
if dataset_option == "Upload New Dataset":
|
| 67 |
uploaded_file = st.file_uploader("π€ Upload Dataset (CSV or JSON)", type=["csv", "json"])
|
|
|
|
| 68 |
if uploaded_file is not None:
|
|
|
|
| 69 |
if uploaded_file.name.endswith(".csv"):
|
| 70 |
new_data = pd.read_csv(uploaded_file)
|
| 71 |
elif uploaded_file.name.endswith(".json"):
|
|
|
|
| 75 |
st.error("β Unsupported file format. Please upload CSV or JSON.")
|
| 76 |
st.stop()
|
| 77 |
|
|
|
|
| 78 |
if os.path.exists(dataset_path):
|
| 79 |
new_data.to_csv(dataset_path, mode='a', index=False, header=False)
|
| 80 |
st.success(f"β
Data appended to `{dataset_path}`!")
|
| 81 |
else:
|
| 82 |
new_data.to_csv(dataset_path, index=False)
|
| 83 |
st.success(f"β
Dataset saved as `{dataset_path}`!")
|
|
|
|
| 84 |
elif dataset_option == "Use Existing Dataset (`train_data.csv`)":
|
| 85 |
if os.path.exists(dataset_path):
|
| 86 |
st.success("β
Using existing `train_data.csv` for fine-tuning.")
|
|
|
|
| 91 |
# -------------------------------
|
| 92 |
# Hyperparameters Configuration
|
| 93 |
# -------------------------------
|
| 94 |
+
st.subheader("π§ Hyperparameter Configuration")
|
| 95 |
learning_rate = st.number_input("π Learning Rate", value=1e-4, format="%.5f")
|
| 96 |
batch_size = st.number_input("π οΈ Batch Size", value=16, step=1)
|
| 97 |
epochs = st.number_input("β±οΈ Epochs", value=3, step=1)
|
| 98 |
|
| 99 |
+
|
| 100 |
# -------------------------------
|
| 101 |
+
# Fine-tuning Execution with Real-Time Visualization
|
| 102 |
# -------------------------------
|
| 103 |
if st.button("π Start Fine-tuning"):
|
| 104 |
+
st.info("Fine-tuning process initiated...")
|
|
|
|
|
|
|
| 105 |
hf_token = get_hf_token()
|
| 106 |
|
| 107 |
# Model loading logic
|
| 108 |
if finetune_option == "Refinetune existing model" and saved_model_path:
|
|
|
|
| 109 |
tokenizer, model = load_model("google/gemma-3-1b-it", hf_token)
|
|
|
|
|
|
|
| 110 |
model = load_finetuned_model(model, saved_model_path)
|
|
|
|
| 111 |
if model:
|
| 112 |
st.success(f"β
Loaded saved model: `{saved_model_path}` for refinement!")
|
| 113 |
else:
|
| 114 |
st.error("β Failed to load the saved model. Aborting.")
|
| 115 |
st.stop()
|
|
|
|
| 116 |
else:
|
|
|
|
| 117 |
if not selected_model:
|
| 118 |
st.error("β Please select a model to fine-tune.")
|
| 119 |
st.stop()
|
|
|
|
| 120 |
tokenizer, model = load_model(selected_model, hf_token)
|
|
|
|
| 121 |
if model:
|
| 122 |
st.success(f"β
Base model loaded: `{selected_model}`")
|
| 123 |
else:
|
| 124 |
st.error("β Failed to load the base model. Aborting.")
|
| 125 |
st.stop()
|
| 126 |
|
| 127 |
+
# Create placeholders for training progress
|
| 128 |
+
loss_chart = st.line_chart() # Loss curve
|
| 129 |
+
acc_chart = st.line_chart() # Accuracy curve
|
| 130 |
+
progress_text = st.empty()
|
| 131 |
+
|
| 132 |
+
# Simulate training loop with real-time visualization
|
| 133 |
+
losses_over_epochs = []
|
| 134 |
+
accuracies_over_epochs = []
|
| 135 |
+
|
| 136 |
+
for epoch, losses, accs in simulate_training(epochs, learning_rate, batch_size):
|
| 137 |
+
# Update training text
|
| 138 |
+
progress_text.text(f"Epoch {epoch}/{epochs} in progress...")
|
| 139 |
+
|
| 140 |
+
# Assume simulate_training returns overall average loss and accuracy per epoch
|
| 141 |
+
losses_over_epochs.append(losses) # e.g., average loss of the epoch
|
| 142 |
+
accuracies_over_epochs.append(accs) # e.g., average accuracy of the epoch
|
| 143 |
+
|
| 144 |
+
# Update real-time charts
|
| 145 |
+
loss_chart.add_rows(pd.DataFrame({"Loss": [losses]}))
|
| 146 |
+
acc_chart.add_rows(pd.DataFrame({"Accuracy": [accs]}))
|
| 147 |
+
|
| 148 |
+
progress_text.text("Fine-tuning completed!")
|
| 149 |
+
|
| 150 |
# Save fine-tuned model with timestamp
|
| 151 |
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
| 152 |
+
model_identifier = selected_model if selected_model else os.path.basename(saved_model_path)
|
| 153 |
+
new_model_name = f"models/fine_tuned_model_{model_identifier.replace('/', '_')}_{timestamp}.pt"
|
| 154 |
|
|
|
|
| 155 |
saved_model_path = save_model(model, new_model_name)
|
|
|
|
| 156 |
if saved_model_path:
|
| 157 |
st.success(f"β
Fine-tuning completed! Model saved as `{saved_model_path}`")
|
|
|
|
|
|
|
| 158 |
model = load_finetuned_model(model, saved_model_path)
|
|
|
|
| 159 |
if model:
|
| 160 |
st.success("π οΈ Fine-tuned model loaded and ready for inference!")
|
| 161 |
else:
|
requirements.txt
CHANGED
|
@@ -9,4 +9,6 @@ FuzzyTM>=0.4.0
|
|
| 9 |
requests>=2.28.0
|
| 10 |
xlsxwriter>=3.0.1
|
| 11 |
python-dotenv>=0.19.0
|
| 12 |
-
scipy>=1.7.3
|
|
|
|
|
|
|
|
|
| 9 |
requests>=2.28.0
|
| 10 |
xlsxwriter>=3.0.1
|
| 11 |
python-dotenv>=0.19.0
|
| 12 |
+
scipy>=1.7.3
|
| 13 |
+
seaborn>=0.13.2
|
| 14 |
+
llama-cpp-python>=0.3.8
|
utils.py
CHANGED
|
@@ -11,7 +11,7 @@ import os
|
|
| 11 |
import asyncio
|
| 12 |
from dotenv import load_dotenv
|
| 13 |
from scipy.stats import skew, kurtosis, zscore
|
| 14 |
-
|
| 15 |
# -------------------------------
|
| 16 |
# Environment and Token Management
|
| 17 |
# -------------------------------
|
|
@@ -192,6 +192,33 @@ def convert_to_onnx(model, output_path="model.onnx"):
|
|
| 192 |
st.error(f"β ONNX conversion failed: {e}")
|
| 193 |
return None
|
| 194 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 195 |
|
| 196 |
# -------------------------------
|
| 197 |
# Model Inference and Training
|
|
@@ -355,7 +382,7 @@ def compute_dataset_score(df):
|
|
| 355 |
if df.empty:
|
| 356 |
return 0.0
|
| 357 |
|
| 358 |
-
total_cells = np.
|
| 359 |
missing_cells = df.isnull().sum().sum()
|
| 360 |
missing_ratio = missing_cells / total_cells
|
| 361 |
|
|
|
|
| 11 |
import asyncio
|
| 12 |
from dotenv import load_dotenv
|
| 13 |
from scipy.stats import skew, kurtosis, zscore
|
| 14 |
+
import llama_cpp
|
| 15 |
# -------------------------------
|
| 16 |
# Environment and Token Management
|
| 17 |
# -------------------------------
|
|
|
|
| 192 |
st.error(f"β ONNX conversion failed: {e}")
|
| 193 |
return None
|
| 194 |
|
| 195 |
+
# Convert to GGUF (for Llama.cpp)
|
| 196 |
+
def convert_to_gguf(model, output_path="model.gguf"):
|
| 197 |
+
llama_cpp.export_gguf(model, output_path)
|
| 198 |
+
return output_path
|
| 199 |
+
|
| 200 |
+
# Convert to TensorFlow SavedModel
|
| 201 |
+
def convert_to_tf_saved_model(model, output_path="model_tf"):
|
| 202 |
+
tf_model = tf.Module()
|
| 203 |
+
|
| 204 |
+
# Export the PyTorch model to TensorFlow using ONNX as intermediary
|
| 205 |
+
dummy_input = torch.randn(1, 3, 224, 224)
|
| 206 |
+
torch.onnx.export(model, dummy_input, "temp_model.onnx")
|
| 207 |
+
|
| 208 |
+
# Load ONNX model into TensorFlow
|
| 209 |
+
import onnx
|
| 210 |
+
from onnx_tf.backend import prepare
|
| 211 |
+
|
| 212 |
+
onnx_model = onnx.load("temp_model.onnx")
|
| 213 |
+
tf_rep = prepare(onnx_model)
|
| 214 |
+
tf_rep.export_graph(output_path)
|
| 215 |
+
|
| 216 |
+
return output_path
|
| 217 |
+
|
| 218 |
+
# Convert to PyTorch format
|
| 219 |
+
def convert_to_pytorch(model, output_path="model.pth"):
|
| 220 |
+
torch.save(model.state_dict(), output_path)
|
| 221 |
+
return output_path
|
| 222 |
|
| 223 |
# -------------------------------
|
| 224 |
# Model Inference and Training
|
|
|
|
| 382 |
if df.empty:
|
| 383 |
return 0.0
|
| 384 |
|
| 385 |
+
total_cells = np.prod(df.shape)
|
| 386 |
missing_cells = df.isnull().sum().sum()
|
| 387 |
missing_ratio = missing_cells / total_cells
|
| 388 |
|